
Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-1

CHAPTER 8: GETTING STARTED WITH VISUAL
STUDIO TOOLS FOR MICROSOFT DYNAMICS GP
Objectives

The objectives are:

• Provide an overview of Visual Studio Tools for Microsoft Dynamics
GP, their benefits, and what the tools provide.

• List required software and actions you must perform before installing
the tools.

• Explain the steps required to install the Software Development Kit
(SDK).

• Describe the basic project creation of a form that resembles a
Microsoft Dynamics GP form.

• Discuss details about various controls modified by the tools.
• Provide an example of creating a user interface by using the tools.
• Explain accessing resources in dictionaries to use together with an

integrating application.
• Register and respond to events that occur in Microsoft Dynamics GP.
• Build and deploy an application.

Introduction
The Visual Studio Tools for Microsoft Dynamics GP are used together with
Microsoft Visual Studio .NET 2005 and the .NET languages to create
integrations to the Microsoft Dynamics GP accounting application. This content
provides the following:

• Requirements that must be met before installing the Visual Studio
Tools for Microsoft Dynamics GP

• Installation steps for the Visual Studio Tools for Microsoft Dynamics
GP and Visual Studio Tools Software Development Kit (SDK)

Additionally, how to create a new project in Visual Studio 2005 using the
Microsoft Dynamics GP Add-in template is discussed. This includes:

• Creating a Windows Form that looks and functions like a Microsoft
Dynamics GP window

• Adding controls to the application
• Using available dictionary resources
• Responding to events that occur in Microsoft Dynamics GP
• Deploying the application

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-2

Scenario
You are a developer who has been creating custom applications used with
Microsoft Dynamics GP for several years. Additionally, you want to remain
current on new technologies and tools to use in development projects and are
interested in the Visual Studio Tools for Microsoft Dynamics GP. However,
more information about the following items is required:

• The benefits of using the Visual Studio Tools for Microsoft
Dynamics GP.

• The requirements to use the tools.
• How to install the Visual Studio Tools for Microsoft Dynamics GP

and its associated Software Development Kit (SDK).

Using your new knowledge, you want to create a quick entry form version of the
RM Customer Maintenance window for one of your customers. The custom form
includes the minimum number of fields required to create a customer. On the
quick entry form the Customer wants to be able to:

• Enter and save new customer records
• Access and edit existing customer records
• Delete existing records
• Clear the window and start over

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-3

Integration Basics
The Visual Studio Tools for Microsoft Dynamics GP architecture:

• Includes industry-standard tools that respond to Microsoft Dynamics
GP events

• Enables you to programmatically reference Microsoft Dynamics GP
forms, windows, scrolling windows, fields, global variables, and
global scripts

• Lets you create applications that have the same look as Microsoft
Dynamics GP

Using the Visual Studio Tools for Microsoft Dynamics GP directly in Visual
Studio helps reduce costs by:

• Minimizing development and implementation time
• Letting you use industry-standard tools such as SOAP, XML,

Microsoft SQL Server, Microsoft Visual Studio, and the Microsoft
.NET Framework

• Helping you to quickly create customizations that enhance Microsoft
Dynamics GP and mirror your business practices

What Visual Studio Tools Provide

Visual Studio Tools for Microsoft Dynamics GP provide three main capabilities
for an integrating application:

• Customized Windows Forms
• Access to Dictionary Resources
• Access to Events

Customized Windows Forms

Windows Forms in an application that integrates with Microsoft Dynamics GP
can use the capabilities provided by the Visual Studio Tools for Microsoft
Dynamics GP to match the appearance of the core application. You can
customize the appearance of the window in addition to various controls on the
window.

Access to Dictionary Resources

When you create an integrating application, you have access to the resources
available in the Microsoft Dynamics GP application dictionaries. An integrating
application can access the forms, windows, and fields in each dictionary. The
application can access global variables, commands, procedures, and functions
that are defined in each dictionary.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-4

Access to Events

An integrating application can be notified of events that occur in Microsoft
Dynamics GP, such as a window opening or focus moving to a field. The
application can respond to the events and perform actions that include verifying
field values or opening other windows.

Architecture

Visual Studio Tools for Microsoft Dynamics GP consists of runtime and
development components.

Runtime Components

Runtime components for Visual Studio Tools for Microsoft Dynamics GP
provide functionality used by the integrating application. These components are:

• Dexterity Shell - This assembly provides drawing capabilities that
allow for an integrating application to look like Microsoft Dynamics
GP. The name of this assembly is Microsoft.Dexterity.Shell.dll.

• Dexterity Bridge - This assembly provides access to events and
resources in the Microsoft Dynamics GP application dictionaries.
The name of this assembly is Microsoft.Dexterity.Bridge.dll.

• Application assemblies - Each dictionary you want to access by
using the Visual Studio Tools for Microsoft Dynamics GP has an
application assembly. These assemblies provide access to resources
in their corresponding dictionaries. For example, the
Application.Dynamics.dll assembly provides access to resources in
the Dynamics.dic dictionary.

The ability to install application assemblies for all modules in Microsoft
Dynamics GP is included in the Microsoft Dynamics GP installation. You can
use the Dictionary Assembly Generator tool, DAG.exe, to create application
assemblies for other third-party dictionaries.

You must put assemblies for integrating applications that are created by using
Visual Studio Tools for Microsoft Dynamics GP in the AddIns folder. When
Microsoft Dynamics GP starts, the AddIns folder is accessed, and then
integrating applications in this folder start.

Development Components

The following components are installed:

• DAG.exe - the Dictionary Assembly Generator tool used to create
application assemblies for third-party dictionaries. Use this tool to
create application assemblies for:
– Third-party dictionaries that do not already have assemblies.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-5

– Forms dictionaries when your application must interact with
modified forms.

• IntelliSense XML files - contain information about the application
assembly. Information is displayed in IntelliSense in Visual Studio.

The name of the IntelliSense XML file matches the name of the
application assembly to which it is related. For example, the
Application.Dynamics.XML file contains IntelliSense information
about the Application.Dynamics.dll assembly.

• Project templates - two components are installed in Visual Studio:
– Visual Basic project - This project template is for an add-in that

is written by using Visual Basic .NET.
– Visual C# project - This project template is for an add-in that is

written by using C#.

Prerequisites
The following topics discuss the requirements that must be met before you install
the Visual Studio Tools for Microsoft Dynamics GP.

Visual Studio 2005

To use the Visual Studio Tools for Microsoft Dynamics GP, Visual Studio 2005
service pack 1 is required. Earlier versions of Visual Studio cannot be used, and
it is assumed that you are familiar with programming in a managed language
such as C# or Visual Basic .NET.

Microsoft Dynamics GP

You must be using Microsoft Dynamics GP 10.0 with the latest service packs.
Because you will be using the Visual Studio Tools for Microsoft Dynamics GP
together with Microsoft Dynamics GP, knowledge of the accounting system
helps. Review Microsoft Dynamics GP documentation resources to learn more
about the product.

With this release of the Visual Studio Tools for Microsoft Dynamics GP, you
must use a launch file that is named Dynamics.set to start Microsoft Dynamics
GP and to create application assemblies by using the DAG.exe tool. Using a
launch file that has a different name prevents the Visual Studio Tools add-ins
from loading.

Optionally, you can also install the Microsoft Dynamics GP SDK. The SDK is
available on Microsoft Dynamics GP Installation CD 2. It contains useful
information about Microsoft Dynamics GP, such as lists of frequently used
procedures and functions.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-6

Installation and Verification
In this release there is no longer a separate runtime installer for Visual Studio
Tools for Microsoft Dynamics GP. The runtime has been integrated into the core
Microsoft Dynamics GP product and is available in every installation. However,
to create an integration by using the Visual Studio Tools for Microsoft Dynamics
GP, the Visual Studio Tools for Microsoft Dynamics GP SDK must be installed.
The SDK installation contains the documentation and components that are
required to create and build applications.

SDK Installation

The Visual Studio Tools for Microsoft Dynamics GP SDK can be downloaded
from PartnerSource. Follow these steps to perform the Visual Studio Tools for
Microsoft Dynamics GP SDK installation:

1. Start the Visual Studio Tools for Microsoft Dynamics GP SDK
installer. To start the installation, double-click the VSToolsSDK-
GP10-enu.msi file and then click Run.

2. View the Welcome screen, and then click Next to continue.
3. Read and acknowledge the license agreement, and then click Next to

continue.
4. Select the features to install in the Select Features window. The

default location for Microsoft Dynamics GP, C:\Program
Files\Microsoft Dynamics\GP10 VS Tools SDK, is listed. Click
Browse to change the location. Click Next to continue.

5. When the Ready to Install window appears, click Next. During the
installation, Visual Studio must be reconfigured to recognize the new
templates being installed. This process may take several minutes to
finish.

6. Click Finish to complete the installation.

Verify the Installation

To confirm the Visual Studio Tools for Microsoft Dynamics GP components are
installed, create a project in Visual Studio and make sure that the documentation
is available.

To create a new Visual Studio project that uses a Microsoft Dynamics GP add-in,
follow these steps:

1. Start Visual Studio. Click Start, point to Programs, point to Visual
Studio 2005, and then click Visual Studio 2005.

2. Create a new project. On the File menu, point to New, and then click
Project.

3. Select the project type and Microsoft Dynamics GP Add-in from the
list of available templates.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-7

4. Specify the name and location of the project. If you want, type a new
name and location or click Browse to select a different location.
Click OK to create the project.

When the project is created, references are automatically added to
the Application.Dynamics.dll and Microsoft.Dexterity.Bridge.dll
assemblies.

Confirm Documentation Installation

The documentation is available in the location that you specified during the
installation, for example C:\Program Files\Microsoft Dynamics\GP10 VS Tools
SDK. In this directory, the following files are installed:

• VSTDGPProgrammersGuide.pdf
• VSTDGPReadme.rtf

Toward the end of the VSTDGPProgrammersGuide.pdf document are additional
examples that show how to use Visual Studio Tools for Microsoft Dynamics GP.
The following examples are discussed:

• Field Defaulter - describes an example, written in C#, which uses
events to default field values in Microsoft Dynamics GP.
Specifically, values for the City and State fields default when a user
enters a value in the ZIP code field on the Customer Maintenance
window.

• Estimate Freight - describes an example that estimates freight
amounts for sales documents in Microsoft Dynamics GP. This
sample application, written in C#, demonstrates several techniques
that are useful when you create Microsoft Dynamics GP integrations.
The sample integrates with the Sales Transaction Entry window.

Creating Windows Forms
When you use Visual Studio 2005, create user interfaces and applications that
run locally on a user's computer. Use a Windows form to present information to
and accept input from the user. Forms are objects that:

• Expose properties that define their appearance
• Use methods that define their behavior
• Contain events that define their interaction with the user

By setting the properties of the form and writing code to respond to its events,
you customize the object to meet your requirements.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-8

Windows Form Overview

As with all objects in the .NET Framework, forms are instances of classes. The
framework lets you inherit from existing forms to add functionality or modify
existing behavior. When you add a form to a project, decide whether it inherits
from the Form class that is provided by the .NET Framework, or from a form
previously created.

Forms can be:

• Standard windows
• Multiple document interface (MDI) windows
• Dialog boxes
• Display surfaces for graphical routines

Standard Windows forms are the basis for the user interface for add-ins that are
created by using the Visual Studio Tools for Microsoft Dynamics GP. These
Windows forms and the controls added to them are specially modified to match
the appearance of Microsoft Dynamics GP. The forms that are created by using
the Microsoft Dynamics GP Add-In template automatically inherit from the
DexUIForm class that is contained in the Microsoft.Dexterity.Shell assembly.

Add a Dynamics GP Form to a Project

Working with the built-in form designers and components of Visual Studio helps
you quickly develop Windows applications. To add a new Dynamics GP Form to
a Microsoft Dynamics GP Add-In project, click Project, click Add Component,
select Microsoft Dynamics GP Form from the list of available templates,
provide a name for the form, and then click Add.

After the Dynamics GP Form has been added to the project, set Windows form
properties.

Windows Form Properties

Windows forms added to a project can take advantage of properties available to
standard Windows forms. Microsoft Dynamics GP forms have several additional
properties that control their appearance. Setting these properties correctly helps
you match the appearance of Microsoft Dynamics GP. These properties are:

• AutoSetDexColors
• ControlArea
• StatusArea

NOTE: If you sort the items in the Properties pane in Visual Studio by
Category, these Windows Forms properties are found in the “Dexterity” group.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-9

AutoSetDexColors

The AutoSetDexColors property controls whether the colors in the Windows
form automatically match the color scheme selected in Microsoft Dynamics GP.
Each user can select colors and styles for links, required and editable fields, and
alternating lines in scrolling windows that appear in Microsoft Dynamics GP in
the User Display Preferences window. To open this window from the Microsoft
Dynamics GP menu, click Tools, point to Setup, click User Preferences, and
then click Display.

In Visual Studio, set the AutoSetDexColors property to True to match the
Microsoft Dynamics GP appearance.

ControlArea

The ControlArea property specifies if the band called the control area is drawn at
the top of the Windows form. In standard Microsoft Dynamics GP windows,
controls such as the Save, Clear, and Delete buttons are put in the control area.

Set the ControlArea property to True to display the control area for a Windows
form.

StatusArea

The StatusArea property specifies if the band called the status area is drawn at
the bottom of the Windows form. A divider line is drawn across the bottom of the
Windows form to indicate the status area. In standard Microsoft Dynamics GP
windows, controls like the browse, note, and help buttons are put in the status
area.

Set the StatusArea property to True to display the status area for a Windows
form.

FIGURE 8.1 CONTROL AND STATUS AREAS

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-10

Control References
Windows Forms contain a variety of controls you can add:

• TextBoxes
• Buttons
• Drop-down boxes
• Radio buttons
• Web pages

You can use any of the available controls on the Windows forms for a Microsoft
Dynamics GP application. Some of the standard controls have been customized
to better match the appearance of Microsoft Dynamics GP. For example, push
buttons have additional properties.

Add controls to the forms for the Microsoft Dynamics GP integration just as you
add them to standard Windows forms. Select the control in the Toolbox and drag
it onto the form.

Buttons

When a button control is clicked, it looks as if the control is being pushed in and
released. Programmatically, a click event is occurring.

Buttons on a Microsoft Dynamics GP form have two additional properties,
ButtonType and AutoSetDexColors. These properties specify how the button
control is displayed and what characteristics it has. Button controls on a
Microsoft Dynamics GP form acquire their additional characteristics from the
dexButtonProvider control on the Windows form layout.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-11

ButtonType

There are five button types. Each type has different characteristics and is
typically used on specific areas of a Microsoft Dynamics GP form. The image
shows each button type with its associated picture.

FIGURE 8.2 BUTTONTYPES AND THEIR PICTURES

Standard

Standard buttons appear the same whether they are put on a Microsoft Dynamics
GP form or a standard Windows form.

Toolbar

Buttons with the ButtonType property set to Toolbar are typically put in the
control area of a Microsoft Dynamics GP form. These buttons have a flat
appearance and a special color highlighting when the pointer hovers over them.
Buttons of this type typically have pictures on them.

ToolbarWithSeparator

Buttons with the ButtonType property set to ToolbarWithSeparator are typically
put in the control area. However, these buttons have an additional separator line
drawn on the right side to separate it from other controls in the control area.

StatusArea

Buttons in the status area at the bottom of a window will have the ButtonType
property set to StatusArea. These buttons will display only graphics and have the
ToolTip property set to display a description of the action the button performs.
Buttons of type StatusArea have a special 3-D border drawn around them when
the pointer hovers over them.

Field

Buttons that show only pictures and are put next to other controls in the form will
have the ButtonType property set to Field. Use these buttons for actions such as
lookups or expansions.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-12

Pictures for Buttons

Each Visual Studio for Microsoft Dynamics GP project includes several standard
images used for buttons in Microsoft Dynamics GP. These images are in PNG
format and must be used on the buttons you create.

FIGURE 8.3 IMAGE, IMAGE NAME, AND HOW TO USE THE IMAGE

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-13

AutoSetDexColors

When you set the AutoSetDexColors property to True, the button colors match
the colors in Microsoft Dynamics GP.

TextBoxes

TextBox controls are used for string, integer, currency, date, and time controls on
a Microsoft Dynamics GP form. The figure shows a TextBox control:

FIGURE 8.4 TEXTBOX CONTROL WITH A CURRENCY VALUE

AutoSetDexColors

Set the AutoSetDexColors property to True on TextBoxes so the control colors
match the colors in Microsoft Dynamics GP.

Unlike the standard controls in Microsoft Dynamics GP, TextBox controls do not
have built-in support to format data, such as currency values. You must add code
to the application to match the behavior of the controls in Microsoft Dynamics
GP. For example, the following code sets the value of a TextBox. The Format
method for the String object is used to format the currency value.

//C#

//Display the value formatted as a currency amount

txtSalesAmount.Text = String.Format("{0:C}", SalesAmount);

'VB .NET

'Display the value formatted as a currency amount

txtSalesAmount.Text = String.Format("{0:C}", SalesAmount)

In the example, the format string “C” is a property of the NumberFormatInfo
class. This property converts the number in the TextBox to a string and formats
the number according to values associated with the current culture of Windows
through Regional and Language Options in Control Panel. It is possible to
override some of the values associated with the current culture by creating a
CultureInfo object and setting its UseUserOverride property to true.

For more information about string formatting, review the MSDN article titled
Formatting Types(http://msdn2.microsoft.com/en-
us/library/fbxft59x(vs.80).aspx).

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-14

Labels

Label controls are used for the text labels that appear next to controls in the
Microsoft Dynamics GP form. They correspond to the static text items that
appear in standard Microsoft Dynamics GP windows.

FIGURE 8.5 LABEL CONTROL

LinkField

Label controls have the LinkField property to set when a specific field is being
labeled. This property is set to the name of the control to which the label is
applied. When it is specified in the Microsoft Dynamics GP User Preferences
window, the label is drawn with a standard single underline.

NOTE: To have the underlined label draw correctly, the AutoSize property for
the label must be set to False.

ComboBoxes

Use the ComboBox control when you use a drop-down list or combo box in
Microsoft Dynamics GP.

AutoSetDexColors

ComboBox controls have an AutoSetDexColors property to set to True so the
control colors match colors in Microsoft Dynamics GP. The figure shows a
ComboBox control that is used as a drop-down list in a Microsoft Dynamics GP
form.

FIGURE 8.6 COMBO BOX CONTROL

ListBoxes

Use the ListBox control when you use a list or multi-select list in Microsoft
Dynamics GP.

AutoSetDexColors

Similar to the other controls, ListBox controls have an AutoSetDexColors
property to use to match the colors in Microsoft Dynamics GP.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-15

Create a Quick Entry Customer Window
This demonstration shows how to create a window that includes the minimum
number of fields that a client requires to create a customer in Microsoft
Dynamics GP. It also shows how to create a Windows form using the Microsoft
Dynamics GP form template, add controls to the form, and set properties of the
controls including the Microsoft Dynamics GP specific properties.

Add a Dynamics GP Form

To create a Quick Entry Customer window, add a new Dynamics GP Form to a
Microsoft Dynamics GP Add-In project.

1. In Visual Studio 2005, create a new project. Click File, point to
New, and then click Project.

2. In the New Project window, expand C# or Visual Basic .NET, click
Dynamics GP, and then click Microsoft Dynamics GP Add-in.
Name the project CustomerQuickEntry, set the location of the
project to C:\NetProjects, and then click OK.

3. In Solution Explorer pane, right-click CustomerQuickEntry, click
Add, and then click Component.

4. In the Add New Item window, click Microsoft Dynamics GP
Form, name the form QuickEntry, and then click Add.

TextBox Controls and Properties

Add TextBox controls to the form and set their properties.

Control Property Value
TextBox1 (Name) txtCustomerID

 AutoSetDexColors True

TextBox2 (Name) txtCustomerName

 AutoSetDexColors True

TextBox3 (Name) txtCustomerAddress

 AutoSetDexColors True

TextBox4 (Name) txtCity

 AutoSetDexColors True

TextBox5 (Name) txtState

 AutoSetDexColors True

TextBox6 (Name) txtPostalCode

 AutoSetDexColors True

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-16

Control Property Value
TextBox7 (Name) txtPhoneNumber

 AutoSetDexColors True

Label Controls and Properties

Add label controls to the form and set their properties.

Control Property Value
Label1 (Name) lblCustomerID

 Text Customer ID

 AutoSetDexColors True

 LinkField on dexLabelProvider txtCustomerID

Label2 (Name) lblCustomerName

 Text Customer Name

 AutoSetDexColors True

 LinkField on dexLabelProvider txtCustomerName

Label3 (Name) lblCustomerAddress

 Text Address

 AutoSetDexColors True

 LinkField on dexLabelProvider txtCustomerAddress

Label4 (Name) lblCityStatePostal

 Text City, State, Postal

 AutoSetDexColors True

 LinkField on dexLabelProvider txtCity

Label5 (Name) lblPhoneNumber

 Text Phone

 AutoSetDexColors True

 LinkField on dexLabelProvider txtPhoneNumber

Label6 (Name) lblAccountType

 Text Account Type:

 AutoSetDexColors True

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-17

Control Property Value
Label7 (Name) lblShippingMethod

 Text Shipping Method:

 AutoSetDexColors True

Button Controls and Properties

Add button controls to the form and set their properties.

Control Property Value
Button1 (Name) btnSave

 Text Save

 AutoSetDexColors True

 ToolTip on tooltip Save

 ButtonType on dexButtonProvider ToolbarWithSeparator

 Image Toolbar_Save

Button2 (Name) btnClear

 Text Clear

 AutoSetDexColors True

 ToolTip on tooltip Clear the form

 ButtonType on dexButtonProvider ToolbarWithSeparator

 Image Toolbar_Clear

Button3 (Name) btnDelete

 Text Delete

 AutoSetDexColors True

 ToolTip on tooltip Delete

 ButtonType on dexButtonProvider ToolbarwithSeparator

 Image Toolbar_Delete

 Enabled False

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-18

Control Property Value
Button4 (Name) btnCustomerIDLookup

 Text Blank

 AutoSetDexColors True

 ToolTip on tooltip Lookup

 ButtonType on dexButtonProvider Field

 Image Field_Lookup

Button5 (Name) btnVCRFirst

 Text Blank

 AutoSetDexColors True

 ToolTip on tooltip First Record

 ButtonType on dexButtonProvider StatusArea

 Image VCR_First

Button6 (Name) btnVCRPrevious

 Text Blank

 AutoSetDexColors True

 ToolTip on tooltip Previous Record

 ButtonType on dexButtonProvider StatusArea

 Image VCR_Previous

Button7 (Name) btnVCRNext

 Text Blank

 AutoSetDexColors True

 ToolTip on tooltip Next Record

 ButtonType on dexButtonProvider StatusArea

 Image VCR_Next

Button8 (Name) btnVCRLast

 Text Blank

 AutoSetDexColors True

 ToolTip on tooltip Last Record

 ButtonType on dexButtonProvider StatusArea

 Image VCR_Last

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-19

GroupBox, Radio Button, and ListBox Controls and
Properties

Add groupbox, radio button, and listbox controls to the form and set their
properties.

Control Property Value
GroupBox1 (Name) gbxAccountType

 Text Blank

RadioButton1 (Name) rbtnOpenItem

 Text Open Item

 Checked True

RadioButton2 (Name) rbtnBalanceForward

 Text Balance Forward

 Checked False

ListBox1 (Name) lbxShippingMethod

 Items Federal Express
UPS Ground
UPS Blue
UPS Red
Counter Pickup
Note: Enter one item per line.

 AutoSetDexColors True

Set Form Properties

Set form properties according to the following table.

Control Property Value
QuickEntry (Name) QuickEntry

 Text Customer Quick Entry

 AcceptButton btnSave

 CancelButton btnClear

 AutoSetDexColors True

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-20

Form Layout

When finished, the Customer Quick Entry form resembles the figure.

FIGURE 8.7 CUSTOMER QUICK ENTRY FORM

Access Dictionary Resources
To create an integration for Microsoft Dynamics GP or the additional
applications that are installed with it, the code must access resources in the
various application dictionaries.

Add a Reference to an Application Assembly

To access the resources in a specific dictionary, a project must contain a
reference to the application assembly for that dictionary. When you create a new
Visual Studio Tools for Microsoft Dynamics GP project, it automatically
contains a reference to the Application.Dynamics.dll application assembly. This
provides access to resources in the Dynamics.dic dictionary.

To access resources in other dictionaries, add references to the application
assemblies for them. If a dictionary does not have a corresponding application
assembly, use the Dictionary Assembly Generator to create the assembly.

Consider the following example. You have installed an application named
MyApplication that integrates with Microsoft Dynamics GP. In the Visual Studio
Tools for Microsoft Dynamics GP project, you want to use resources specific to
MyApplication. Therefore, the project must contain a reference to the
Application.MyApplication.dll application assembly.

Add the reference in Visual Studio by clicking Project, and then clicking Add
Reference. In the Add Reference window, click the Browse tab and locate the
application assembly.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-21

Reference the Namespace

After you add the appropriate references to the project, to simplify accessing the
resources, add using or Imports statements to the classes if they do not already
exist. Resources for a dictionary are accessed through the following namespace:

Microsoft.Dexterity.Applications

Therefore, the using or Imports statement is as follows:

//C# using statement

using Microsoft.Dexterity.Applications;

'VB .Net Imports statement

Imports Microsoft.Dexterity.Applications

Referencing the namespace prevents you from have to fully-qualify references to
dictionary resources in the code.

Dictionary Class

The resources in a dictionary are accessed through a single class. This class:

• Is only available after you add the reference to the dictionary's
application assembly.

• Has the same name that appears in the application assembly.

The class to access resources for the Dynamics dictionary is named Dynamics. In
the previous scenario, a reference to the Application.MyApplication.dll
application assembly was added. The class used to access resources from this
assembly is named MyApplication.

There are four primary resource types in a dictionary:

• Forms
• Globals
• Procedures
• Functions

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-22

These resource types are accessed through the properties of the class. To access a
resource of the specific type, start by typing the dictionary class name, and then
property for the resource type. IntelliSense in Visual Studio presents a list of the
specific type of resources available in the dictionary. The figure shows some of
the Functions resources in the Dynamics core application.

FIGURE 8.8 FUNCTIONS RESOURCES IN THE DYNAMICS CLASS

After you select the desired resource, a list of the properties, methods, and events
available for the resource appears. The contents of this list depend on the
resource you have selected. For example, if you select
Dynamics.Globals.Address1, you have access to the Value property. There are
many more events, properties, and methods that you can use when you select a
Dynamics.Forms resource.

The figure shows some of the properties, methods, and events for the
SalesDocLookup form in the Dynamics dictionary.

FIGURE 8.9 RESOURCES FOR THE SALESDOCLOOKUP FORM

Several additional resource types are accessed through the Forms property of a
dictionary class as follows:

• Windows
• Commands
• Form-level procedures
• Form-level functions

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-23

The following sample statement opens the General Ledger Account
Maintenance window by using the Form object:

//C#

Dynamics.Forms.GlAccountMaintenance.GlAccountMaintenance.Op
en();

'VB .NET

Dynamics.Forms.GlAccountMaintenance.GlAccountMaintenance.Op
en()

Windows provide access to two additional resource types:

• Fields
• Scrolling windows

The following statement sets the value of the Account Description field in the
General Ledger Account Maintenance window.

//C#

Dynamics.Forms.GlAccountMaintenance.GlAccountMaintenance.Ac
countDescription.Value ="Test Account";

'VB .NET

Dynamics.Forms.GlAccountMaintenance.GlAccountMaintenance.Ac
countDescription.Value ="Test Account"

Variables for Dictionary Resources

Within the code, it is useful to create variables for specific resources in an
application dictionary. The definitions for the various dictionary resources are
found in an additional namespace available in the application assembly. This
namespace has the same name that appears in the application assembly, but has
“Dictionary” appended.

For example, to reference the definitions for resources in the main Dynamics
dictionary, use the following namespace:

Microsoft.Dexterity.Applications.DynamicsDictionary

To reference resources for the sample application, MyApplication, use this
namespace:

Microsoft.Dexterity.Applications.MyApplicationDictionary

After you create the variable, assign it a value, and then use it in the code. The
following code creates a variable for the General Ledger Account Maintenance
window in Microsoft Dynamics GP. It assigns the window to the variable, and
then uses it to open the form.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-24

//C#

using Microsoft.Dexterity.Applications.DynamicsDictionary;

GlAccountMaintenanceForm.GlAccountMaintenanceWindow
AccountForm;

AccountForm =
Dynamics.Forms.GlAccountMaintenance.GlAccountMaintenance;

AccountForm.Open();

'VB .NET

Imports Microsoft.Dexterity.Applications.DynamicsDictionary

Dim AccountForm as
GlAccountMaintenanceForm.GlAccountMaintenanceWindow

AccountForm =
Dynamics.Forms.GlAccountMaintenance.GlAccountMaintenance

AccountForm.Open();

Using a variable can simplify code, especially when accessing dictionary
resources with long names. The following code creates a variable for the
General Ledger Account Maintenance window in Microsoft Dynamics GP.
Then it sets the value of the Account Description field on the window.

Notice that it takes less code than in the previous example to set the field when
the variable is used.

//C#

//Create the variable and set its value

GlAccountMaintenanceForm.GlAccountMaintenanceWindow
AccountForm;

AccountForm =
Dynamics.Forms.GlAccountMaintenance.GlAccountMaintenance.

GlAccountMaintenance;

//Accessing window fields requires less code

//Create the variable and set its value

AccountForm.AccountDescription.Value ="Test Account";

'VB .NET

'Create the variable and set its value

Dim Account Form As
GlAccountMaintenanceForm.GlAccountMaintenanceWindow

AccountForm =
Dynamics.Forms.GlAccountMaintenance.GlAccountMaintenance.

GlAccountMaintenance

'Accessing window fields requires less code

AccountForm.AccountDescription.Value ="Test Account"

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-25

Events
When a user does something to a form or one of its controls, it generates an
event. An application reacts to these events by using code, and processes the
events when they occur.

Applications that integrate with Microsoft Dynamics GP frequently must be
notified when specific events occur in Microsoft Dynamics GP. The following
topics describe how to register to be notified when events occur, as well as how
to write event handlers that can respond to the events.

Registering Events

Applications can handle an event that occurs in Microsoft Dynamics GP. This
means that a method is executed in response to the event. Any method that
handles an event must have the same signature as the event itself; that is, it must
take the same kinds of arguments as the event passes.

The integrating application must register every Microsoft Dynamics GP event it
wants to be notified of occurring. Event registrations are added to the Initialize()
method. This method, located in the template code, is automatically added when
you create a Visual Studio Tools for Microsoft Dynamics GP project.

The resources for which you can register events, such as forms, windows, or
fields, list the events that they make available. For example, a form has the
following events available:

• OpenBeforeOriginal
• OpenAfterOriginal
• CloseBeforeOriginal
• CloseAfterOriginal

To register an event, follow these guidelines:

1. Find the resource for which you want to register the event.
2. Pick the event.
3. Specify the event handler method.

The event handler is the method that contains the code that runs in response to
the event. You must create an association between events and event handlers to
achieve the results that you want. If an event handler is not associated with an
event, nothing will occur in Visual Basic .NET and in C# an error is returned.

Registering an event in C# differs from registering an event in Visual Basic
.NET. The following topics describe how to register an event in each
programming language.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-26

Register an Event in C#

Event handlers in C# can return a value that can be assigned to a variable. Link a
method with a given event by using the += operator to make the association.
Visual Studio helps you register an event in C# code as described in the
following steps:

1. Reference the resource for which you want to register an event.
2. Add the += operator, and Visual Studio displays IntelliSense to

complete the event handler.
3. Press the TAB key to add the event handler registration. After the

event handler registration is added, Visual Studio offers to add the
event handler method for the new event.

4. Press the TAB key again to add the event handler method.

The following sample code registers the CloseBeforeOriginal event for the Item
Maintenance form in Microsoft Dynamics GP and shows the event handler
method:

public void Initialize()

{

Dynamics.Forms.IvItem.CloseBeforeOriginal += new
System.ComponentModel.CancelEventHandler(Item_CloseBeforeOr
ginal);

}

void Item_CloseBeforeOrginal(object sender,
System.ComponentModel.CancelEventArgs e)

{

//Process the event here.

}

Register an Event in Visual Basic .NET

In Visual Basic .NET, event handlers must be Sub procedures that do not return a
value. Use the AddHandler statement to associate the Sub procedure with a
specific event. By using the AddHandler statement, specify an event and
designate its associated method. To designate the associated method, create a
pointer by using the operator AddressOf.

Registering an event in a Visual Basic project requires two steps.

1. In the Initialize() method of the project, use the AddHandler
statement to register the event. The AddHandler statement takes two
parameters:

a. The first parameter specifies the resource and event.
b. The second parameter specifies the event handler

method to run.

The sample code registers the CloseBeforeOriginal event

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-27

for the Item Maintenance form in Microsoft Dynamics
GP.

2. Add the event handler method. Remember that the parameters for
this method must match those required by the event. The IntelliSense
for the event displays the parameters the event handler must have.

The sample code shows the event handler method added for the event created in
step 1.

'Register the event

Sub Initialize() Implements IDexterityAddIn.Initialize

AddHandler Dynamics.Forms.IVItem.CloseBeforeOriginal, _

AddressOf ItemCloseBeforeOriginal

End Sub

'Add the event handler method

Public Sub ItemCloseBeforeOriginal (ByVal sender As Object,
ByVal e _

As System.ComponentModel.CancelEventArgs)

'Process the event here.

End Sub

Respond to Events in C#

The event handler method contains the code that runs in response to the event.
This code can perform whatever action is required to respond to events in an
application.

The following code is the event handler that runs in response to the value of the
Customer ID field being changed in the Customer Maintenance window. If the
Customer Quick Entry form that was created in the demonstration is open, a
control on the form is set.

void RMCustomerNumber_Change(object sender, EventArgs e)

{

//If the Customer Quick Entry form is open, update the
//Customer ID

if (QuickEntry.ActiveForm.Created == true)

{

RmCustomerMaintenanceForm.RmCustomerMaintenanceWindow
RMCustomer;

RMCustomer =
Dynamics.Forms.RmCustomerMaintenance.RmCustomerMaintenance;

txtCustomerName.Text = RMCustomer.CustomerName.Value;

}

}

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-28

Some events can be canceled through the event handler. Typically, these are
events that occur before the event in the core application, such as the
OpenBeforeOriginal event for a form.

The event argument parameter, CancelEventArgs, that is passed to the event
handler for these events has a special type that enables the event to be canceled.
Use the cancel property of the CancelEventArgs object within the event handler
to cancel the event.

Respond to Events in Visual Basic .NET

The following Visual Basic .NET example is the event handler for the
BeforeOpen event of the Customer Maintenance form. The CancelEventArgs
object is declared in the signature as e. The event handler method examines the
current user logged into the system. If the UserID is not equal to the “sa” user, a
message is displayed, the window does not open, and the event is canceled by
setting the Cancel property of the e CancelEventArgs object.

Public Sub RMCustMaintBeforeOpen(ByVal sender As Object,
ByVal e _

As System.ComponentModel.CancelEventArgs)

If Dynamics.Globals.UserId.Value ="sa" Then

'Display the message

MsgBox("Do not access this window as the Administrator")

'Prevent the form from opening

Dynamics.Forms.RmCustomerMaintenance.Close()

'Cancel pending events

e.Cancel = True

End If

End Sub

Build and Deploy
After writing an application, you must send it to the intended audience so that
they can install and run it on their own computers. Building and deploying an
application that uses Visual Studio Tools for Microsoft Dynamics GP can be
divided into three steps:

1. Set assembly information.
2. Build the application.
3. Deploy the application.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-29

Set Assembly Information

As a developer, make sure that you set the assembly information so the assembly
for the Visual Studio Tools for Microsoft Dynamics GP integration is correctly
identified and versioned. The identity of the assembly is contained in the
AssemblyInfo.vb or .cs file for the project.

Set the following items:

• Title
• Description
• Company
• Major, minor, and build numbers

C#

For applications written in C#, the assembly information is set in the
AssemblyInfo.cs source file for the project. The following part of this file shows
the various name values to set.

//General Information about an assembly is controlled
//through the following set of attributes. Change these
//attribute values to modify the information associated
//with an assembly.

[assembly: AssemblyTitle("Customer Quick Entry")]

[assembly: AssemblyDescription("Customer Quick Entry
Application")]

[assembly: AssemblyConfiguration("")]

[assembly: AssemblyCompany("Microsoft")]

[assembly: AssemblyProduct("QuickEntry")]

[assembly: AssemblyCopyright("")]

[assembly: AssemblyTrademark("")]

[assembly: AssemblyCulture("")]

The following part of this file shows the version, build, and revision numbers that
must be set.

//Version information for an assembly consists of the

//following four values:

// Major Version

// Minor Version

// Build Number

// Revision

//You can specify all values or default the Revision and

//Build Numbers

[assembly: AssemblyVersion("1.0.0.0")]

[assembly: AssemblyFileVersion("1.0.0.0")]

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-30

Visual Basic .NET

For applications written in Visual Basic .NET, the assembly information is set in
the Assembly Information window. To access this window and set the assembly
information, follow these steps:

1. In Solution Explorer, right-click the solution, and then click
Properties.

2. On the Applications tab of the properties page, click Assembly
Information.

3. In the Assembly Information window, type the appropriate data and
then click OK.

FIGURE 8.10 ASSEMBLY INFORMATION WINDOW

Build the Application

When you develop an application, periodically build the solution and resolve any
compiler error messages. To build the application, follow these steps:

1. Set the solution configuration. When you build a test version of the
integration, set the solution configuration drop-down in the main
toolbar to “Debug.” When you build a final version of the
integration, set the solution configuration to “Release.”

To create a new configuration or edit an existing configuration, click
Configuration Manager from the solution configuration drop-down
in the main toolbar.

2. Build the solution. Click Build and then click Build <Solution>.
<Solution> is a placeholder for the name of the solution.

3. Determine whether there were build problem by looking in the Task
List window. Double-click an error in the Task List window to

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-31

4. locate the problematic code and then correct the error. If it is
necessary, obtain help by pressing F1.

Continue to build the solution until there are no longer any build
problems.

5. Copy the assembly for the application from the “Debug” or
“Release” folder for the project to the AddIns folder in the Microsoft
Dynamics GP installation.

6. Copy any assemblies created with the Dictionary Assembly
Generator to the Microsoft Dynamics GP folder.

7. The integrating application is loaded when Microsoft Dynamics GP
starts. Verify the integration is working correctly.

Deploy the Application

When you deploy an application created by using Visual Studio Tools for
Microsoft Dynamics GP, make sure to include the following items:

• The assembly for the application.
• Instructions that state which application assemblies are required for

the application.
• Any additional application assemblies generated that are specific to

the application.
• Instructions that explain how to install the application.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-32

Lab 8.1 - Create a Vendor Item Quality Form
Scenario

Your client has indicated that many of their customers are returning items
purchased from specific vendors. The client wants an additional window in
Microsoft Dynamics GP to display Vendor Quality Information. The client also
wants to see the Vendor ID, Name, and Contact person on the window, as well as
a field in which to type the item name and a drop-down list that they can use to
select their level of satisfaction with the Vendor.

Challenge Yourself
1. In Visual Studio, create a new Microsoft Dynamics GP Add-in

project.
2. Add a new Microsoft Dynamics GP Form to the Add-in project.
3. Add the following controls to the form:

Control Property Value
Button1 (Name) btnSave

 AutoSetDexColors True

 ButtonType on
dexButtonProvider

ToolbarWithSeparator

 Image Toolbar_Save

 Text Save

 ToolTip on tooltip Save

Button2 (Name) btnClear

 AutoSetDexColors True

 ButtonType on
dexButtonProvider

ToolbarWithSeparator

 Image Toolbar_Clear

 Text Clear

 ToolTip on tooltip Clear the form

Button3 (Name) btnDelete

 AutoSetDexColors True

 ButtonType on
dexButtonProvider

ToolbarwithSeparator

 Image Toolbar_Delete

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-33

Control Property Value
 Text Delete

 ToolTip on tooltip Delete

Button4 (Name) btnRedisplay

 AutoSetDexColors True

 ButtonType on
dexButtonProvider

ToolbarwithSeparator

 Image Toolbar_Redisplay

 Text Redisplay

 ToolTip on tooltip Redisplay

TextBox1 (Name) txtVendorID

 AutoSetDexColors True

TextBox2 (Name) txtVendorName

 AutoSetDexColors True

TextBox3 (Name) txtContact

 AutoSetDexColors True

TextBox4 (Name) txtItem

 AutoSetDexColors True

ComboBox1 (Name) cbxSatisfaction

 AutoSetDexColors True

 Items Excellent
Good
Average
Fair
Poor
Note: Enter one item per line

Label1 (Name) lblVendorID

 AutoSetDexColors True

 LinkField on
dexLabelProvider

txtVendorID

 Text Vendor ID

Label2 (Name) lblVendorName

 AutoSetDexColors True

 LinkField on
dexLabelProvider

txtVendorName

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-34

Control Property Value
 Text Name

Label3 (Name) lblContact

 AutoSetDexColors True

 LinkField on
dexLabelProvider

txtContact

 Text Contact

Label4 (Name) lblItem

 AutoSetDexColors True

 LinkField on
dexLabelProvider

txtItem

 Text Item

Label5 (Name) lblSatisfaction

 AutoSetDexColors True

 LinkField on
dexLabelProvider

cbxSatisfaction

 Text Satisfaction

VendorQuality (Name) frmVendorQuality

 AcceptButton btnSave

 AutoSetDexColors True

 CancelButton btnClear

 Text Vendor Quality

4. Add code to:
a. The Clear button to clear all controls.
b. The Save button to save the item and satisfaction rating.
c. The Delete button to delete the item and satisfaction

rating.
d. The Redisplay button to obtain information from the

Vendor Maintenance form and set the appropriate
fields on the Vendor Quality form.

e. Populate the appropriate fields on the Vendor Quality
form when the form opens.

5. Build the solution and resolve any error messages.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-35

Need a Little Help?
1. In Visual Studio, create a new project.
2. In the New Project window, expand C# or Visual Basic .NET, click

Dynamics GP, and then click Microsoft Dynamics GP Add-in.
3. Add a Microsoft Dynamics GP Form to your project.
4. Add the following controls to the form:

Control Property Value
Button1 (Name) btnSave

 AutoSetDexColors True

 ButtonType on
dexButtonProvider

ToolbarWithSeparator

 Image Toolbar_Save

 Text Save

 ToolTip on tooltip Save

Button2 (Name) btnClear

 AutoSetDexColors True

 ButtonType on
dexButtonProvider

ToolbarWithSeparator

 Image Toolbar_Clear

 Text Clear

 ToolTip on tooltip Clear the form

Button3 (Name) btnDelete

 AutoSetDexColors True

 ButtonType on
dexButtonProvider

ToolbarwithSeparator

 Image Toolbar_Delete

 Text Delete

 ToolTip on tooltip Delete

Button4 (Name) btnRedisplay

 AutoSetDexColors True

 ButtonType on
dexButtonProvider

ToolbarwithSeparator

 Image Toolbar_Redisplay

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-36

Control Property Value
 Text Redisplay

 ToolTip on tooltip Redisplay

TextBox1 (Name) txtVendorID

 AutoSetDexColors True

TextBox2 (Name) txtVendorName

 AutoSetDexColors True

TextBox3 (Name) txtContact

 AutoSetDexColors True

TextBox4 (Name) txtItem

 AutoSetDexColors True

ComboBox1 (Name) cbxSatisfaction

 AutoSetDexColors True

 Items Excellent
Good
Average
Fair
Poor
Note: Enter one item per line

Label1 (Name) lblVendorID

 AutoSetDexColors True

 LinkField on
dexLabelProvider

txtVendorID

 Text Vendor ID

Label2 (Name) lblVendorName

 AutoSetDexColors True

 LinkField on
dexLabelProvider

txtVendorName

 Text Name

Label3 (Name) lblContact

 AutoSetDexColors True

 LinkField on
dexLabelProvider

txtContact

 Text Contact

Label4 (Name) lblItem

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-37

Control Property Value
 AutoSetDexColors True

 LinkField on
dexLabelProvider

txtItem

 Text Item

Label5 (Name) lblSatisfaction

 AutoSetDexColors True

 LinkField on
dexLabelProvider

cbxSatisfaction

 Text Satisfaction

VendorQuality (Name) frmVendorQuality

 AcceptButton btnSave

 AutoSetDexColors True

 CancelButton btnClear

 Text Vendor Quality

5. Your form will resemble the figure.

FIGURE 8.11 VENDOR QUALITY FORM

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-38

6. Add code to:
a. The Clear button to clear all controls.
b. The Save button to save the item and satisfaction rating

to the Comment1 and Comment2 fields on the Vendor
Maintenance form.

c. The Delete button to delete the item and satisfaction
rating from the Comment1 and Comment2 fields
Vendor Maintenance form.

d. The Redisplay button to obtain information from the
Vendor Maintenance form and set the appropriate
fields on the Vendor Quality form.

e. Populate the Vendor Id, Vendor Name, and Contact
fields on the Vendor Quality form when the form
opens. Use the related fields from the Vendor
Maintenance window.

7. Build the solution and resolve any error messages.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-39

Lab 8.2 - Create a Form to Display Items When a Lookup
Button is Clicked

Scenario

Your client finds that there is inconsistent data in the Item field that was created
in the previous lab. Add a lookup button to the Vendor Quality form and create
a new form that is displayed when the lookup button is clicked. On the new form,
the item descriptions will be available to the user. After the user makes their
selection, update the Item field on the Vendor Quality form with the Item
Number.

Challenge Yourself
1. Add a new button to the Vendor Quantity form next to the Item

field.
2. Add a new Microsoft Dynamics GP Form to the Vendor Quality

solution.
3. Add a Web Reference to the DynamicsGPService.asmx web service.
4. Add a DataGridView and a Select button to the form.
5. Add code to retrieve Item summary information and populate the

DataGridView.
6. Add code to the Select button to retrieve the selected Item Number

and update the Item field on the Vendor Quality form.
7. Build the application and resolve any error messages.

Need a Little Help?
1. Add a new button to the Vendor Quantity form next to the txtItem

field, and set the properties according to the figure.

FIGURE 8.12 UPDATED VENDOR QUALITY FORM

2. Add a new Microsoft Dynamics GP Form to the Vendor Quality
solution.

3. Add a Web Reference to the DynamicsGPService.asmx web service.
4. Add a DataGridView and a Select button to the form.
5. In the Load event, add code to call a method to retrieves Item

summary information.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-40

6. Create the method and add code to it to retrieve all items and
populate the DataGridView.

7. On the DataGridView do not display the ClassKey, CreatedDate,
IsDiscontinued, Key, ModifiedDate, and Type columns.

8. Add code to the Select button to retrieve the Item Number and
update the Item field on the Vendor Quality form.

9. Modify the click event of the lookup button to open the new form.
10. Build the application and resolve any error messages.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-41

Summary
Visual Studio Tools for Microsoft Dynamics GP help you develop applications
quickly and effectively. After installing the SDK components of the Visual
Studio Tools for Microsoft Dynamics GP, use the documentation to create an
application that uses the Microsoft Dynamics GP Add-in template.

As you develop the applications, use controls and set their properties to create
new Windows applications that have the same look as Microsoft Dynamics GP.
Additionally, use references to application assemblies to access dictionary
resources. After dictionary resources are available:

• Access resource types
• Set the value of a field on a form by using the

Microsoft.Dexterity.Applications.DynamicsDictionary namespace
• Create a variable to hold a specific resource

In your application, use the Initialize() method to respond to events that occur in
Microsoft Dynamics GP. And when complete, build and deploy the application.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-42

Test Your Knowledge
Test your knowledge with the following questions.

Installation and Verification

1. There are two parts to the Visual Studio Tools for Microsoft Dynamics GP
installation. Which of the following installation parts enables you to run the
applications that you create using the Visual Studio Tools?

() Microsoft Dynamics GP Add-in
() SDK
() DAG.exe
() Runtime

Integration Basics

2. During the Visual Studio Tools for Microsoft Dynamics GP installation,
multiple assembles are installed. Which assembly provides drawing
capabilities that enable an integrating application to look like Microsoft
Dynamics GP?

Prerequisites

3. You can install the Visual Studio Tools for Microsoft Dynamics GP for use
with Visual Studio 2003 and the .NET Framework 1.1.

() True
() False

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-43

Control References

4. Which button type would you use to put a button with an arrow on it to open
the Account Entry Window?

() Standard
() Toolbar
() Field
() StatusArea

5. What property do you set and what value do you set it to so that the colors of
a control match the colors in Microsoft Dynamics GP?

Access Dictionary Resources

6. Which application assembly provides access to resources in the
Dynamics.dic dictionary and is automatically added when you create a
Visual Studio Tools for Microsoft Dynamics GP project?

() Application.Dynamics.dll
() Application.Dexterity.dll
() Application.Dynamics.Dictionary.dll
() Dynamics.Application.dll

Events

7. Which of the following code fragments prevents additional processing of an
event? Select one.

() event.cancel
() CancelEventArgs.cancel
() return cancel
() e.cancel

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-44

Build and Deploy

8. For applications written in Visual Basic .NET, where do you set the
assembly information?

9. Copy the assembly for the application from the "Debug" or "Release" folder
for the project to the AddIns folder in the Microsoft Dynamics GP
installation.

() True
() False

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-45

Lab 8.1 - Create a Vendor Item Quality Form (Solution)
Scenario

Your client has indicated that many of their customers are returning items
purchased from specific vendors. The client wants an additional window in
Microsoft Dynamics GP to display Vendor Quality Information. The client also
wants to see the Vendor ID, Name, and Contact person, as well as a field in
which to type the item name and a drop-down list that they can use to select their
level of satisfaction with the Vendor.

Step by Step
1. In Visual Studio, create a new project. Click File, point to New, and

then click Project.
2. In the New Project window, expand C# or Visual Basic .NET, click

Dynamics GP, and then click Microsoft Dynamics GP Add-in.
Name the project VSTGP_VendorQuality, set the location of the
project to C:\NetProjects, and then click OK.

3. In Solution Explorer, right-click VSTGP_VendorQuality, click
Add, and then click Component.

4. In the Add New Item window, click Microsoft Dynamics GP
Form, name the form VendorQuality, and then click Add.

5. Add controls to the form according to the following table:

Control Property Value
Button1 (Name) btnSave

 AutoSetDexColors True

 ButtonType on
dexButtonProvider

ToolbarWithSeparator

 Image Toolbar_Save

 Text Save

 ToolTip on tooltip Save

Button2 (Name) btnClear

 AutoSetDexColors True

 ButtonType on
dexButtonProvider

ToolbarWithSeparator

 Image Toolbar_Clear

 Text Clear

 ToolTip on tooltip Clear the form

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-46

Control Property Value
Button3 (Name) btnDelete

 AutoSetDexColors True

 ButtonType on
dexButtonProvider

ToolbarwithSeparator

 Image Toolbar_Delete

 Text Delete

 ToolTip on tooltip Delete

Button4 (Name) btnRedisplay

 AutoSetDexColors True

 ButtonType on
dexButtonProvider

ToolbarwithSeparator

 Image Toolbar_Redisplay

 Text Redisplay

 ToolTip on tooltip Redisplay

TextBox1 (Name) txtVendorID

 AutoSetDexColors True

TextBox2 (Name) txtVendorName

 AutoSetDexColors True

TextBox3 (Name) txtContact

 AutoSetDexColors True

TextBox4 (Name) txtItem

 AutoSetDexColors True

ComboBox1 (Name) cbxSatisfaction

 AutoSetDexColors True

 Items Excellent
Good
Average
Fair
Poor
Note: Enter one item per line

Label1 (Name) lblVendorID

 AutoSetDexColors True

 LinkField on
dexLabelProvider

txtVendorID

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-47

Control Property Value
 Text Vendor ID

Label2 (Name) lblVendorName

 AutoSetDexColors True

 LinkField on
dexLabelProvider

txtVendorName

 Text Name

Label3 (Name) lblContact

 AutoSetDexColors True

 LinkField on
dexLabelProvider

txtContact

 Text Contact

Label4 (Name) lblItem

 AutoSetDexColors True

 LinkField on
dexLabelProvider

txtItem

 Text Item

Label5 (Name) lblSatisfaction

 AutoSetDexColors True

 LinkField on
dexLabelProvider

cbxSatisfaction

 Text Satisfaction

VendorQuality (Name) frmVendorQuality

 AcceptButton btnSave

 AutoSetDexColors True

 CancelButton btnClear

 Text Vendor Quality

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-48

6. When finished, the Vendor Quality form resembles the following

screenshot:

FIGURE 8.13 VENDOR QUALITY FORM

7. Add code to the click event of the Clear button to clear all controls:

//C#

private void btnClear_Click(object sender, EventArgs e)

{

txtContact.Text = String.Empty;

txtItem.Text = String.Empty;

txtVendorID.Text = String.Empty;

txtVendorName.Text = String.Empty;

cbxSatisfaction.SelectedItem = null;

}

'VB .NET

Private Sub btnClear_Click(ByVal sender As Object, ByVal e
As EventArgs)

txtContact.Text = String.Empty

txtItem.Text = String.Empty

txtVendorID.Text = String.Empty

txtVendorName.Text = String.Empty

cbxSatisfaction.SelectedItem = Nothing

End Sub

8. Add code to the click event of the Save button to save the item and

satisfaction rating to the Comment1 and Comment2 field on the
Vendor Maintenance form:

//C#

private void btnSave_Click(object sender, EventArgs e)

{

Dynamics.Forms.PmVendorMaintenance.PmVendorMaintenance.Comm
ent1.Value = txtItem.Text;

Dynamics.Forms.PmVendorMaintenance.PmVendorMaintenance.Comm
ent2.Value = cbxSatisfaction.SelectedItem.ToString();

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-49

}

'VB .NET

Private Sub btnSave_Click(ByVal sender As Object, ByVal e
As EventArgs)

Dynamics.Forms.PmVendorMaintenance.PmVendorMaintenance.Comm
ent1.Value = txtItem.Text

Dynamics.Forms.PmVendorMaintenance.PmVendorMaintenance.Comm
ent2.Value = cbxSatisfaction.SelectedItem.ToString()

End Sub

9. Add code to the click event of the Delete button to delete the item

and satisfaction rating from the Comment 1 and Comment 2 fields:

//C#

private void btnDelete_Click(object sender, EventArgs e)

{

Dynamics.Forms.PmVendorMaintenance.PmVendorMaintenance.Comm
ent1.Value = String.Empty;

Dynamics.Forms.PmVendorMaintenance.PmVendorMaintenance.Comm
ent2.Value = String.Empty;

}

'VB .NET

Private Sub btnDelete_Click(ByVal sender As Object, ByVal e
As EventArgs)

Dynamics.Forms.PmVendorMaintenance.PmVendorMaintenance.Comm
ent1.Value = String.Empty

Dynamics.Forms.PmVendorMaintenance.PmVendorMaintenance.Comm
ent2.Value = String.Empty

End Sub

10. Add code to the click event of the Redisplay button to obtain the

information from Vendor Maintenance form and set the fields on
the Vendor Quality form:

//C#

private void btnRedisplay_Click(object sender, EventArgs e)

{

txtVendorID.Text =
Dynamics.Forms.PmVendorMaintenance.PmVendorMaintenance.Vend
orId.Value;

txtVendorName.Text =
Dynamics.Forms.PmVendorMaintenance.PmVendorMaintenance.Vend
orName.Value;

txtContact.Text =
Dynamics.Forms.PmVendorMaintenance.PmVendorMaintenance.Vend
orContact.Value;

}

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-50

'VB .NET

Private Sub btnRedisplay_Click(ByVal sender As Object,
ByVal e As EventArgs)

txtVendorID.Text =
Dynamics.Forms.PmVendorMaintenance.PmVendorMaintenance.Vend
orId.Value

txtVendorName.Text =
Dynamics.Forms.PmVendorMaintenance.PmVendorMaintenance.Vend
orName.Value

txtContact.Text =
Dynamics.Forms.PmVendorMaintenance.PmVendorMaintenance.Vend
orContact.Value

End Sub

11. Add code to the VendorQuality_Load event to set the Vendor ID,

Vendor Name, and Contact fields from the Vendor Maintenance
form when the Vendor Quality form is opened:

//C#

private void frmVendorQuality_Load(object sender, EventArgs
e)

{

txtVendorID.Text =
Dynamics.Forms.PmVendorMaintenance.PmVendorMaintenance.Vend
orId.Value;

txtVendorName.Text =
Dynamics.Forms.PmVendorMaintenance.PmVendorMaintenance.Vend
orName.Value;

txtContact.Text =
Dynamics.Forms.PmVendorMaintenance.PmVendorMaintenance.Vend
orContact.Value;

}

'VB .NET

Private Sub frmVendorQuality_Load(ByVal sender As Object,
ByVal e As EventArgs)

txtVendorID.Text =
Dynamics.Forms.PmVendorMaintenance.PmVendorMaintenance.Vend
orId.Value

txtVendorName.Text =
Dynamics.Forms.PmVendorMaintenance.PmVendorMaintenance.Vend
orName.Value

txtContact.Text =
Dynamics.Forms.PmVendorMaintenance.PmVendorMaintenance.Vend
orContact.Value

End Sub

12. Build the application by clicking Build and then Build

VSTGP_VendorQuality. Correct any error messages that are
returned.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-51

Lab 8.2 - Create a Form to Display Items When a Lookup
Button is Clicked (Solution)

Scenario

Your client finds that there is inconsistent data in the Item field that was created
in the previous lab. Add a lookup button to the Vendor Quality form and create
a new form that is displayed when the lookup button is clicked. On the new form,
the item descriptions will be available to the user. After the user makes their
selection, update the Item field on the Vendor Quality form with the Item
Number.

Step by Step
1. Add a new button to the Vendor Quantity form next to the txtItem

field, and set the properties as follows:

Control Property Value
Button1 (Name) btnLookup

 AutoSetDexColors True

 ButtonType on dexButtonProvider Field

 Image Field_Lookup

 Text Blank

 ToolTip on tooltip Lookup

2. Your Vendor Quality form resembles the following screenshot:

FIGURE 8.14 UPDATED VENDOR QUALITY FORM

3. In Solution Explorer, right-click the VendorQuality solution, click
Add, and then click Component.

4. In the Add New Item window, click Microsoft Dynamics GP
Form, name the form Items, and then click Add.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-52

5. Add a Web Reference to the DynamicsGPService.asmx web service.
Click Project, and then click Add Web Reference. Type the
location of the web service in the URL, set the Web Reference name
to DynamicsGPService, and then click Add Reference.

6. Add a DataGridView to the Items form, and resize the
DataGridView and Form as needed.

7. Add a Button to the form. Set the properties of the button as follows:

Control Property Value
Button1 (Name) btnSelect

 AutoSetDexColors True

 ButtonType on dexButtonProvider Toolbar

 Image Field_Lookup

 Text Select

 TextAlign TopRight

 ToolTip on tooltip Select

8. When you are finished, your Items form resembles the following
screenshot:

FIGURE 8.15 ITEMS FORM

9. In Solution Explorer, expand the VendorQuality form, and then
double-click the VendorQuality.Designer class.

a. In the Windows Form Designer generated code, locate
the line of code that instantiates the txtItem Text Box
control.

b. Change the access modifier from private to internal or
Friend as required:

//C#

internal System.Windows.Forms.TextBox txtItem;

'VB .NET

Friend WithEvents txtItem As System.Windows.Forms.TextBox

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-53

10. Double-click the form, and at the top of the Items class, add a using
or Imports statement for the Dynamics GP Web Service.

//C#

using VSTGP_VendorQuality.DynamicsGPService;

'VB .NET

Imports VSTGP_VendorQuality.DynamicsGPService

11. In the class declarations area, create a string variable for the

itemNumber and a form variable for the VendorQuality form as
follows:

//C#

public partial class Items : DexUIForm

{

private frmVendorQuality vQualityForm;

internal string itemNumber;

CompanyKey companyKey;

Context context;

ItemCriteria itemCriteria;

ItemSummary[] itemSummary;

DynamicsGP wsDynamicsGP = new DynamicsGP();

}

'VB .NET

Public Class Items

Inherits DexUIForm

Private vQualityForm As frmVendorQuality

Friend itemNumber As String

Dim companyKey As CompanyKey

Dim context As Context

Dim itemCriteria As ItemCriteria

Dim itemSummary As ItemSummary()

Dim wsDynamicsGP As New DynamicsGP()

End Class

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-54

12. Overload the Items constructor to obtain the active VendorQuality
form:

//C#

public Items(frmVendorQuality vQualityForm)

{

this.vQualityForm = vQualityForm;

InitializeComponent();

}

'VB .NET

Public Sub New(ByVal vQualityForm As frmVendorQuality)

Me.vQualityForm = vQualityForm

InitializeComponent()

End Sub

13. In the Items_Load event, add the following code to retrieve Item

summary information:

//C#

ListItems();

'VB .NET

ListItems()

14. Create a new method named ListItems to retrieve all items and

populate the DataGridView. Remove the columns from the
DataGridView as follows:

//C#

internal void ListItems()

{

wsDynamicsGP.UseDefaultCredentials = true;

//Create a context and specify the company information

context = new Context();

companyKey = new CompanyKey();

companyKey.Id = (-1);

context.OrganizationKey = (OrganizationKey)companyKey;

context.CultureName ="en-US";

itemCriteria = new ItemCriteria();

//Retrieve the item summaries

itemSummary = wsDynamicsGP.GetItemList(itemCriteria,
context);

dataGridView1.DataSource = itemSummary;

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-55

dataGridView1.Columns.Remove("ClassKey");

dataGridView1.Columns.Remove("CreatedDate");

dataGridView1.Columns.Remove("IsDiscontinued");

dataGridView1.Columns.Remove("Key");

dataGridView1.Columns.Remove("ModifiedDate");

dataGridView1.Columns.Remove("Type");

}

'VB .NET

Friend Sub ListItems()

wsDynamicsGP.UseDefaultCredentials = True

'Create a context and specify the company information

context = New Context()

companyKey = New CompanyKey()

companyKey.Id = (-1)

context.OrganizationKey = CType(companyKey,
OrganizationKey)

context.CultureName ="en-US"

itemCriteria = New ItemCriteria()

'Retrieve the item summaries

itemSummary = wsDynamicsGP.GetItemList(itemCriteria,
context)

dataGridView1.DataSource = itemSummary

dataGridView1.Columns.Remove("ClassKey")

dataGridView1.Columns.Remove("CreatedDate")

dataGridView1.Columns.Remove("IsDiscontinued")

dataGridView1.Columns.Remove("Key")

dataGridView1.Columns.Remove("ModifiedDate")

dataGridView1.Columns.Remove("Type")

End Sub

15. Add code to the click event of the Select button to retrieve the Item

Number.

//C#

LikeRestrictionOfString itemRestriction = new
LikeRestrictionOfString();

//Create an instance of the Web service and set the default
//credentials

DynamicsGP wsDynamicsGP = new DynamicsGP();

wsDynamicsGP.UseDefaultCredentials = true;

//Create a context and specify the company information

context = new Context();

companyKey = new CompanyKey();

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-56

companyKey.Id = (-1);

context.OrganizationKey = (OrganizationKey)companyKey;

context.CultureName ="en-US";

itemRestriction.EqualValue =
dataGridView1.SelectedCells[0].Value.ToString();
itemCriteria = new ItemCriteria();

itemCriteria.Description = itemRestriction;

//Retrieve the sales order summaries specified by the
//criteria object

itemSummary = wsDynamicsGP.GetItemList(itemCriteria,
context);

itemNumber = itemSummary[0].Key.Id;

vQualityForm.txtItem.Text = itemNumber;

vQualityForm.Show();

this.Close();

'VB .NET

Dim itemRestriction As New LikeRestrictionOfString()

'Create an instance of the Web service and set the default
'credentials

Dim wsDynamicsGP As New DynamicsGP()

wsDynamicsGP.UseDefaultCredentials = True

'Create a context and specify the company information

context = New Context()

companyKey = New CompanyKey()

companyKey.Id = (-1)

context.OrganizationKey = CType(companyKey,
OrganizationKey)

context.CultureName ="en-US"

itemRestriction.EqualValue =
dataGridView1.SelectedCells(0).Value.ToString()

itemCriteria = New ItemCriteria()

itemCriteria.Description = itemRestriction

'Retrieve the sales order summaries specified by the
'criteria object

itemSummary = wsDynamicsGP.GetItemList(itemCriteria,
context)

itemNumber = itemSummary(0).Key.Id

vQualityForm.txtItem.Text = itemNumber

vQualityForm.Show()

Me.Close()

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-57

16. On the Vendor Quality form, in the click event of the btnLookup
control, add the following code to open the Items form and pass the
active Vendor Quality form:

//C#

private void btnLookup_Click(object sender, EventArgs e)

{

Items myItems = new Items(this);

myItems.Show();

}

'VB .NET

Private Sub btnLookup_Click(ByVal sender As Object, ByVal e
As EventArgs)

Dim myItems As New Items(Me)

myItems.Show()

End Sub

17. Build the application by clicking Build and then Build

VSTGP_VendorQuality. Correct any error messages that are
returned.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-58

Quick Interaction: Lessons Learned
Take a moment and write down three Key Points you have learned from this
chapter:

1.

2.

3.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 8: Getting Started with Visual Studio Tools for Microsoft Dynamics
GP

8-59

Solutions
Test Your Knowledge

Installation and Verification

1. There are two parts to the Visual Studio Tools for Microsoft Dynamics GP
installation. Which of the following installation parts enables you to run the
applications that you create using the Visual Studio Tools?

() Microsoft Dynamics GP Add-in
() SDK
() DAG.exe
(•) Runtime

Integration Basics

2. During the Visual Studio Tools for Microsoft Dynamics GP installation,
multiple assembles are installed. Which assembly provides drawing
capabilities that enable an integrating application to look like Microsoft
Dynamics GP?

MODEL ANSWER - The Dexterity Shell assembly,

Microsoft.Dexterity.Shell.UI.dll, provides drawing capabilities that enable an

integrating application to resemble Microsoft Dynamics GP.

Prerequisites

3. You can install the Visual Studio Tools for Microsoft Dynamics GP for use
with Visual Studio 2003 and the .NET Framework 1.1.

() True
(•) False

Control References

4. Which button type would you use to put a button with an arrow on it to open
the Account Entry Window?

() Standard
() Toolbar
(•) Field
() StatusArea

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

8-60

5. What property do you set and what value do you set it to so that the colors of
a control match the colors in Microsoft Dynamics GP?

MODEL ANSWER - AutoSetDexColors = true

Access Dictionary Resources

6. Which application assembly provides access to resources in the
Dynamics.dic dictionary and is automatically added when you create a
Visual Studio Tools for Microsoft Dynamics GP project?

(•) Application.Dynamics.dll
() Application.Dexterity.dll
() Application.Dynamics.Dictionary.dll
() Dynamics.Application.dll

Events

7. Which of the following code fragments prevents additional processing of an
event? Select one.

() event.cancel
() CancelEventArgs.cancel
() return cancel
(•) e.cancel

Build and Deploy

8. For applications written in Visual Basic .NET, where do you set the
assembly information?

MODEL ANSWER - Assembly Information is set in the Assembly

Information window: 1. In Solution Explorer, right-click your solution, and

then click Properties. 2. On the Applications tab of the Properties page, click

Assembly Information. 3. In the Assembly Information window, type the

appropriate data and then click OK.

9. Copy the assembly for the application from the "Debug" or "Release" folder
for the project to the AddIns folder in the Microsoft Dynamics GP
installation.

(•) True
() False

