
Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-1

CHAPTER 7: ECONNECT
Objectives

The objectives are:

• Provide an overview of eConnect and describe the parts that make up
eConnect.

• Explain the integration capabilities of eConnect.
• List eConnect prerequisites.
• Discuss the required software and actions to perform to install

eConnect.
• Provide information about the namespaces, classes, methods, and

enumerations that are available in the eConnect .NET assemblies.
• Explain the steps to use the Microsoft.Dynamics.GP.eConnect.dll

assembly to create a Vendor.
• Extend eConnect.
• Explain the steps to extend eConnect by using custom XML nodes.

Introduction
The Web Services for Microsoft Dynamics GP use Microsoft Dynamics GP
eConnect (eConnect) together with IIS and ASP.NET as a foundation to provide
access to the data managed by the Microsoft Dynamics GP accounting system.

The SQL-stored procedures and data validation logic built into eConnect helps
guarantee the integrity of data written to the Microsoft Dynamics GP databases.
Although eConnect provides the data access for the Web Services for Microsoft
Dynamics GP, no knowledge of eConnect is required to use the web service. The
Web Services for Microsoft Dynamics GP interface completely isolates the web
service developer from eConnect. However, there may be times when the Web
Services for Microsoft Dynamics GP do not meet your business requirements. In
those situations, you may want to use eConnect directly to create an application.

This course provides an overview of eConnect, including how to install the
runtime version, use the eConnect .NET assemblies, and extend eConnect.

Scenario
You own a small business in the organic foods industry with two locations in the
United States, and want a solution that your employees can use to create Vendor
records for food suppliers. The solution serves as a quick entry form on which a
limited amount of information is entered.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-2

eConnect Overview
eConnect for Microsoft Dynamics GP (eConnect) provides access to an extensive
set of Microsoft Dynamics GP transactions. Using eConnect enables:

• Outside data sources, earlier applications, and point-of-sale systems
to create Microsoft Dynamics GP transactions and send Microsoft
Dynamics GP requests to view specific documents and document
lists.

• Development teams to focus on custom application development
with the ability to snap in eConnect for valuable Microsoft Dynamics
GP transactional access.

• Web integrators to provide cost-effective solutions and reduce the
cost of recoding for new environments.

eConnect provides the ability to use the transaction-based business logic in
Microsoft Dynamics GP. You can extend that business logic without rewriting
existing functionality. Business usage includes:

• The ability to provide document access for service-oriented front
office custom applications.

• Quick connectivity from existing data sources to Microsoft
Dynamics GP.

• A cost-effective method of connecting to existing storefront and
service applications.

eConnect Foundation

eConnect uses Microsoft SQL Server to contain all Microsoft Dynamics GP
business logic. The eConnect business objects reside in the Microsoft Dynamics
GP databases as stored procedures. This allows for an integration to execute with
high performance. The stored procedures contain the business logic used by
eConnect, they validate the data, and supply default values.

The stored procedures are added to the system database (DYNAMICS) during
the initial installation of Microsoft Dynamics GP. The eConnect-stored
procedures are also included when a new company is created using Microsoft
Dynamics GP Utilities.

When using eConnect, you can extend the business logic without the need for
extensive knowledge of the table and schema structures within Microsoft
Dynamics GP. eConnect provides specially named pre- and post stored
procedures that you can customize by adding SQL queries and commands. The
pre- stored procedure runs custom code immediately before the eConnect stored
procedure, while the post stored procedure runs immediately after the eConnect
stored procedure.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-3

Middleware connectivity tools that are provided with eConnect offer standard
API components that can be used to send, publish, and request Microsoft
Dynamics GP transactions. Each component uses eConnect XML schemas. You
can decide the best connectivity tools for a specific implementation of eConnect
depending on specific business requirements. These middleware components can
use COM or .NET, BizTalk, Message Queuing, Web services, stored procedures,
or XML. With these connectivity tools, you can create disconnected integrations
or tightly coupled integrations for your unique situation.

The figure shows the tools and technologies that can be used with eConnect.

FIGURE 7.1 ECONNECT CONFIGURATION THAT DISPLAYS MIDDLEWARE
COMPONENTS

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-4

eConnect Runtime

The eConnect runtime includes several components that allow you to access the
eConnect business objects:

• The eConnect application programming interfaces (APIs) allow you
to programmatically interact with the eConnect business objects
using eConnect XML documents. The eConnect APIs include a
.NET and a MSMQ interface.

• The eConnect BizTalk adapter allows you to use BizTalk to
configure and manage the integration between your application and
Microsoft Dynamics GP.

• The Transaction Requester allows you to publish Microsoft
Dynamics GP documents to a queue. You typically use the
Transaction Requester with the Outgoing Service to publish
specified Microsoft Dynamics GP documents as eConnect XML
documents. The Transaction Requester identifies the specific
transactions the Outgoing Service needs to publish.

• The Replication Service allows you to replicate transactions that
occur in Microsoft Dynamics GP to another database.

eConnect API

eConnect provides a collection of APIs that interact with the business objects.
There are APIs for Microsoft .NET, and Microsoft Message Queuing (MSMQ).
These eConnect APIs allows you to use the interface that best fits your
integration project and the available development tools.

To support its API, eConnect supplies a COM+ application that manages
interaction with the eConnect business objects. The COM+ application installs in
the Component Services of the computer where you installed the eConnect
runtime. The COM+ application requires a user logon. The logon must have
sufficient privileges and be assigned to DYNGRP to access the Microsoft
Dynamics GP databases on the SQL server.

To use the eConnect API, your application must create or read eConnect XML
documents. eConnect supplies XML schema to specify the contents of each
document.

A schema is an XML file (with typical extension .xsd) that describes the syntax
and semantics of XML documents using a standard XML syntax. An XML
schema specifies the content constraints and the vocabulary that compliant
documents must accommodate.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-5

The eConnect business objects validate documents against the schema and reject
documents that do not comply.

The COM+ application supports the following APIs:

• Microsoft .NET
• MSMQ

Microsoft .NET

eConnect installs .NET assemblies on your computer and adds them to the global
assembly cache. The assemblies use the COM+ application to access the
eConnect business objects. To use eConnect in a .NET development project, add
references to these assemblies.

MSMQ

The MSMQ API uses MSMQ queues and Windows services to asynchronously
transport data between your application and Microsoft Dynamics GP. Your
application must be able to access the queues used by the services. Both the
Incoming and Outgoing services use the COM+ application to access the
eConnect business objects.

To use the eConnect Incoming Service, create an XML document and place it in
the specified queue. The Incoming Service monitors that queue and periodically
processes the valid XML documents stored in the queue.

The eConnect Outgoing Service relies on SQL triggers and the business objects
to retrieve specified eConnect documents. The service stores the documents in a
specified queue. Your application must monitor the queue, retrieve the supplied
documents, and perform its actions based on the data in the documents.

BizTalk

eConnect provides a BizTalk adapter as an application integration component
that you can install on the BizTalk 2004 or BizTalk 2006 server. The BizTalk
adapter allows you to use BizTalk to manage interaction with eConnect business
objects.

The BizTalk adapter supports the use of eConnect as a part of a BizTalk
orchestration or in a simple pass-through situation.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-6

Transaction Requester

The Transaction Requester is a collection of SQL database tables and database
triggers that eConnect uses to make Microsoft Dynamics GP data changes
available to other applications.

FIGURE 7.2 TRANSACTION REQUESTOR

The Transaction Requester supports other eConnect services that export data
from Microsoft Dynamics GP to other applications. When eConnect installs the
Transaction Requester, it creates three tables in each specified Microsoft
Dynamics GP database:

• eConnect_Out - This table stores data from selected create, update,
or delete operations that occur within Microsoft Dynamics GP. The
data identifies the individual transactions that occurred. Other
eConnect services use the data in the table to create messages that
can be used to integrate Microsoft Dynamics GP data with other
applications.

• eConnect_Out_Setup - This table contains configuration
information for the Transaction Requester. To keep the Transaction
Requester working, do not make changes to this table.

• eConnectOutTemp - This table is a temporary data store.

To configure the eConnect Transaction Requester, use the eConnect Requester
Setup Tool. The eConnect Requester Setup Tool allows you to specify Microsoft
Dynamics GP objects and operations you want to export to another application.
The utility then adds SQL triggers to Microsoft Dynamics GP that populate the
eConnect_Out table for the specified objects and operations. For more
information about the eConnect Requester Setup Tool, review the eConnect
Installation and Administration Guide.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-7

Replication Service

eConnect includes the Replication Service that copies selected data changes from
Microsoft Dynamics GP to a specified target database. The Replication Service
asynchronously updates the target database to reflect changes made in Microsoft
Dynamics GP.

To use the Replication Service, the target database must have the same table
structure as the Microsoft Dynamics GP database.

FIGURE 7.3 REPLICATION SERVICE

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-8

The Replication Service uses many of eConnect's other components and
interfaces:

• The Transaction Requester specifies the documents and transactions
to replicate.

• The eConnect Outgoing Service creates the XML documents from
the information provided by the Transaction Requester Service. It
places them in the Outgoing queue in MSMQ.

• The eConnect Replication Service takes the documents from the
Outgoing Queue and uses the data to replicate the transaction
directly into the external application's database.

Since the Replication Service performs a specific task, it does not provide an
API. You cannot programmatically customize the Replication Service. Before
starting the Replication Service, you must configure the service. For a detailed
explanation of how to configure the Replication Service, review the eConnect
Installation and Administration Guide.

eConnect Basics
The ability to focus on creating the integration pieces and leaving all the business
logic to eConnect provides additional time for you to concentrate on specific
business requirements. There are two basic types of integrations that you can
create by using eConnect:

• Incoming
• Outgoing

Incoming Integrations

Incoming Integrations refer to any integration where data is moved into
Microsoft Dynamics GP. There are several ways to integrate data into Microsoft
Dynamics GP using eConnect:

• Pass an XML document to the eConnect .NET Assembly.
• Put an XML document on a queue and have the Incoming Service

process the document.
• Send an XML document to BizTalk and have BizTalk process the

document by using the eConnect adapter.

An Incoming Service is included with eConnect and can be used to pull
documents off a queue and push them directly into Microsoft Dynamics GP by
using the eConnect API. This means that all you must do is create XML
documents in the correct format and then put them on a queue. The Incoming
Service picks the XML document off the queue, validates the document, and then
creates the appropriate record in Microsoft Dynamics GP.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-9

The Incoming Service installation includes an eConnect_Incoming.exe.config
file. This file is an XML configuration document that contains setup and
specification rules for the Incoming Service. By default, this configuration file is
created at the following location:

C:\Program Files\Common Files\Microsoft
Shared\eConnect10\Services\Incoming Service

You must modify the eConnect_Incoming.exe.config file after the service is
installed. One key that must be modified is the
eConnect.BackOffice.ConnectionString key. Change the key to represent the
connection string for the Microsoft Dynamics GP SQL Server.

Outgoing Integrations

Outgoing integrations refer to any integration where data is pulled from
Microsoft Dynamics GP. There are several ways to request data from Microsoft
Dynamics GP by using eConnect:

• Pass an XML requester document to the .NET Assembly and receive
an XML document that contains data directly from the Microsoft
Dynamics GP tables.

• Set up a Requester to automatically update a shadow table. The
Outgoing Service will obtain the document and put it on a queue.

• Manually make a requester call to the shadow table using an XML
requester document.

An Outgoing Service is included with eConnect which can be used to monitor an
eConnect shadow table and put documents on a queue. This means that all you
must do is monitor the queue for the Microsoft Dynamics GP documents.

The Outgoing Service installation includes an eConnect_Outgoing.exe.config
file. This file is an XML configuration document that contains setup and
specification rules for the Outgoing Service. By default, the file is created at the
following location:

C:\Program Files\Common Files\Microsoft Shared\eConnect
10\Services\Outgoing Service

You must modify the eConnect_Outgoing.exe.config file after the service is
installed. One key that must be modified is the BackOffice.ConnectionString
key. Change the key to represent the connection string for the Microsoft
Dynamics GP SQL Server.

NOTE: After changing either the eConnect_Incoming.exe.config or the
eConnect_Outgoing.exe.config file, restart the Microsoft Dynamics GP
eConnect Incoming Service or the Microsoft Dynamics GP eConnect Outgoing
Service.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-10

Prerequisites
Before installing eConnect, there are several prerequisites that you must check.
The following topics describe the software requirements and additional steps to
perform before installing eConnect.

Operating System

To install eConnect, the computer must be running one of the following
operating systems:

• Windows XP Professional
• Windows Server 2003 with the latest service pack or Windows

Server 2003 R2
• Windows Small Business Server 2003
• Windows Vista Enterprise
• Windows Vista Business
• Windows Vista Ultimate
• Windows Server 2003 x64 Edition
• Windows Server 2003 for Itanium-based Systems

Microsoft .NET 2.0 Framework

eConnect requires the Microsoft .NET 2.0 Framework. The eConnect installer
verifies that the Microsoft .NET 2.0 Framework is installed on the computer. If
the framework is not found, the eConnect installer stops and instructs you to
install the Microsoft .NET 2.0 Framework.

COM+ User Account

The eConnect COM+ application uses SQL Server integrated security to connect
to the eConnect business objects. During the installation of eConnect, you need
to supply a user account for the COM+ application. To set up the user account,
complete the following procedure:

1. Select or create a user account for the eConnect COM+ application.
• If you plan to install eConnect on a different computer than the

Microsoft Dynamics GP server in a domain environment, select
or create a domain user account.

• If you plan to install eConnect on a different computer than the
Microsoft Dynamics GP server in a workgroup environment,
select or create a user on the Microsoft Dynamics GP server.

• If you plan to install eConnect on the same server as Microsoft
Dynamics GP, select or create a local user account.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-11

2. Give the user account database access. Add the user account you
selected or created to the DYNGRP role for the system
(DYNAMICS) database and for each company database that will be
used with eConnect. When you install eConnect, you will be
prompted to supply the credentials for this user account.

Distributed Transaction Coordinator (DTC)

If eConnect is to be running on a different computer than the SQL Server that is
managing Microsoft Dynamics GP data, the Distributed Transaction Coordinator
(DTC) must be active on both systems.

For Microsoft Windows Server 2003 or Microsoft Windows Small Business
Server 2003, enable the network DTC through the Windows Components Wizard
by following these steps:

1. In Control Panel click Add or Remove Programs, and then select
Add or Remove Windows Components. The Windows
Components Wizard appears.

2. Select the Application Server components, and then click Details to
display the Application Server details.

3. Select Enable network DTC access and then click OK.
4. Complete the changes by clicking Next, and then click Finish to

close the wizard.

How to Configure DTC

If the two computers are in the same domain, the default configuration for DTC
can be used with eConnect. If you have made modifications to the security
configuration for DTC, you must be sure the following settings are used:

• Network DTC Access is enabled.
• The Allow Inbound communication option is selected.
• The Allow Outbound communication option is selected.
• The Mutual Authentication Required option is selected when

running in a domain environment.
• The No Authentication Required option is selected when running

in a workgroup environment or with domains that do not have
established trust relationships, or running in a pre-Windows XP SP2
environment.

Follow these steps to configure the Distributed Transaction Coordinator:

1. Click Start, point to Administrative Tools, and then click
Component Services.

2. In the Component Services window, expand the Component
Services node, and then expand the Computers node to display the
My Computer node.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-12

3. Right-click My Computer and then click Properties.
4. In the Properties window, click the MSDTC tab to display the

Transaction Configuration settings.
5. Click Security Configuration to display the security settings for

DTC.

FIGURE 7.4 DTC SECURITY CONFIGURATION WINDOW

6. Make the appropriate settings and then click OK.
7. Click Yes on the message that services will be stopped and restarted.
8. Click OK on the DTC Console Message restart confirmation.
9. Click OK to close the Properties window.

Functional Currency

eConnect requires a functional currency to be set up for Microsoft Dynamics GP,
even if multicurrency is not being used. To set up a functional currency,
complete the following procedure:

1. Open the Multicurrency Setup window in Microsoft Dynamics GP.
Click Tools, point to Setup, point to Financial, and then click
Multicurrency from the Microsoft Dynamics GP menu. Set the
Functional Currency. Refer to the Microsoft Dynamics GP
documentation for additional information about currency setup and
multicurrency access.

2. Complete check links when needed. If a message prompts you to run
check links for the multicurrency table, do so. To run check links,
click Microsoft Dynamics GP, click Maintenance, and then click
Check Links. Select the series and tables to check. Click OK.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-13

Microsoft Message Queuing (MSMQ)

Application integrations that use the eConnect Incoming, Outgoing, and
Replication services use MSMQ to transport and store XML documents. These
XML documents represent data retrieved from or sent to Microsoft Dynamics
GP. You can install eConnect prior to installing MSMQ, but the eConnect
services do not start until MSMQ is available. To install MSMQ, follow these
steps:

1. In Control Panel click Add or Remove Programs, and then select
Add or Remove Windows Components. The Windows
Components Wizard appears.

2. Click Application Server, and then click Details.
3. Select the Message Queuing check box.
4. Click OK to accept the selection. Click Next to begin the

installation.
5. When the MSMQ install completes, click Finish to close the

Windows Components Wizard.

Installation
By default, the Web Services for Microsoft Dynamics GP installer installs the
eConnect runtime, and then installs eConnect for all companies in Microsoft
Dynamics GP. You can also install the eConnect runtime for Microsoft
Dynamics GP manually. After installing eConnect, check PartnerSource or
CustomerSource for updates and service packs for the eConnect product.

NOTE: It is recommended that eConnect is uninstalled before it is updated.
During the uninstall process pre- and post stored procedure scripts are lost.
Therefore, make sure that you make regular backups of all pre- and post stored
procedure scripts that you add. Hot fix installations do not require a full
uninstall of eConnect.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-14

Runtime Installation

Before installing eConnect, verify the user you are logged in as is in the
Administrator group on the computer on which eConnect is being installed.
Then, follow these steps to install the eConnect runtime:

1. Double-click the eConnect.exe to start the installation.
2. When the License Agreement window appears, read the license

agreement, select the check box to indicate that you accept the terms
of the agreement, and then click Next.

3. When the Select Features window appears, specify the components
to install. The list of features reflects the components you have
installed on the server. For example, the option to install the BizTalk
2006 Adapter is available only when the install detects BizTalk
Server 2006 is present. To include a feature, click the button and
select “Install entire feature”. To exclude a feature, click the button
and select “Do not install feature”.

The install allows you to select from the following features:
– BizTalk 2004 Components - Installs the files needed to install

the BizTalk 2004 application integration component (AIC)
adapter.

– BizTalk 2006 Components - Installs the files needed to install
the BizTalk 2006 application integration component (AIC)
adapter.

– COM+ Components - Installs the COM+ application and .NET
Assembly in COM+ Administration. Also registers the .NET
Assembly in the global assembly cache.

– Incoming-Outgoing Service - Installs the eConnect Incoming
Service, Outgoing Service, and Replication Service into the
Service Control Manager.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-15

4. When the eConnect COM+ User window appears, specify eConnect
account information. Several eConnect components require a user
login and password to access the eConnect business objects. The
eConnect Incoming Service, Outgoing Service, and COM+
application will use this account. Enter the domain\login and
password credentials for the user account you set up as an eConnect
prerequisite.

Remember the account must be part of the DYNGRP role in the
Microsoft Dynamics GP system and company databases on the
Microsoft Dynamics GP SQL Server.

5. On the Ready to Install window, click Install to begin the

installation process. The install runs for several minutes.
6. Once the installation completes, click Exit. The installation creates

the eConnect event log. The log stores all the error, warning and
information messages that eConnect generates. To view the
eConnect event log, click Start, click Control Panel, click
Administrative Tools, and then click Event Viewer. Click
eConnect to view the current list of messages.

Modify the Runtime Installation

If eConnect is already installed and you want to change any of the components,
modify the installation by following these steps:

1. Open Control Panel, click Add Or Remove Programs, locate
eConnect Runtime for Microsoft Dynamics GP 10.0, and then click
Change.

2. In the Modify eConnect Runtime for Microsoft Dynamics GP
10.0 Installation window, select Add/Remove Features, Repair or
Remove.

3. If you click Add/Remove Features, in the Select Features window,
specify the features to modify, click Next, and then click Install in
the Ready to Install window.

4. If you click Repair, in the eConnect COM User window, specify
the windows account for running eConnect, click Next, and then
click Repair.

5. If you click Remove, in the Ready to Remove window, click
Remove.

6. When the Installation Complete window appears, click Exit to
close the wizard.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-16

eConnect .NET Assemblies
You can use the incoming and outgoing services to integrate data with Microsoft
Dynamics GP. Alternatively, you can also use the eConnect .NET assemblies to
create incoming and outgoing integrations. Use Visual Studio .NET 2005 to
create custom applications that use the eConnect assemblies.

eConnect .NET Assemblies

The following eConnect .NET assemblies are available to use when you create a
.NET-connected application:

Assembly Description
Microsoft.Dynamics.GP.eConnect.dll Contains the

eConnectMethods class
that is used by
applications to pass in
and request data from
Microsoft Dynamics GP

Microsoft.Dynamics.GP.eConnect.MiscRoutines.dll Used to create Customer
specific pricing and to
retrieve the next sales
order number based on
setup information

Microsoft.Dynamics.GP.eConnect.Serialization.dll Used for serializing data
into XML format based
on an eConnect schema
which can be passed with
the eConnect .NET
Assembly

Add a Reference

Make a reference to the assemblies by following these steps:

1. In Visual Studio 2005, with the application open, click Project, and
then click Add Reference.

2. Click the Browse tab and locate the assemblies. By default this
location is:

C:\Program Files\Common Files\Microsoft Shared\
eConnect 10\Objects\Dot Net

3. Select the assembly to reference and then click OK.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-17

Microsoft.Dynamics.GP.eConnect Assembly

The namespace that is used in the Microsoft.Dynamics.GP.eConnect assembly is
Microsoft.Dynamics.GP.eConnect. This namespace contains three classes that
you can use to integrate Microsoft Dynamics GP transactions.

Class Description
eConnectMethods Allows you to send and receive eConnect XML

documents

EnumTypes Enumerates the types that are used as parameters with
the eConnectMethods class

eConnectException Allows you to catch eConnect specific error messages

eConnectMethods Class

The eConnectMethods class is part of the Microsoft.Dynamics.GP.eConnect
namespace and inherits from the System.EnterpriseService.ServicedComponent
class. The following methods are contained in the eConnectMethods class:

Method Type Description
eConnect_EntryPoint Public Allows you to submit an XML document

eConnect_Requester Public Allows you to retrieve data from Microsoft
Dynamics GP

EnumTypes Class

The EnumTypes class is part of the Microsoft.Dynamics.GP.eConnect
namespace. This class defines two enumerations, SchemaValidationType and
ConnectionStringType.

Use the SchemaValidationType enumeration in the eConnect_EntryPoint method
to specify the type of schema validation. If you use a value other than None, you
must populate the eConnect_EntryPoint method's eConnectSchema parameter.
The following table displays the enumeration members:

Type Value Description
None 0 No validation is performed

XSD 1 Use an .xsd file for validation

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-18

Use the ConnectionStringType enumeration to specify the type of data server.
The following table displays the enumeration members.

Type Value Description
SqlClient 0 The connection string is for Microsoft SQL Server

OleDB 1 The connection string is for a database server that
supports ODBC connections

eConnect_EntryPoint Method

The eConnect_EntryPoint method is part of the eConnectMethods class in the
Microsoft.Dynamics.GP.eConnect namespace. A sample for this method is as
follows:

//C#

eConnectResult =
eConnectObject.eConnect_EntryPoint(ConnectionString,
EnumTypes.ConnectionStringType.SqlClient, xmlDoc.OuterXml,
EnumTypes.SchemaValidationType.None);

'VB .NET

eConnectResult =
eConnectObject.eConnect_EntryPoint(ConnectionString,
EnumTypes.ConnectionStringType.SqlClient, xmlDoc.OuterXml,
EnumTypes.SchemaValidationType.None)

The eConnect_EntryPoint method has five parameters. This method returns a
Boolean value that indicates the success or failure of the transaction.

Parameter Data Type Description
ConnectionString String Specifies the data server and

database.

ConnectionType Microsoft.Dynamics.
GP.eConnect.EnumT
ypes.ConnectionStrin
gType

Use the ConnectionStringType
enumeration member that specifies
the type of your
data server. ConnectionStringType
includes the following members:
SqlClient
OleDB

sXML String An eConnect XML document.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-19

Parameter Data Type Description
ValidationType Microsoft.Dynamics.

GP.eConnect.EnumT
ypes.SchemaValidati
onTypes

Use a SchemaValidationType
enumeration member
to specify the type of data
validation to perform.
SchemaValidationType includes the
following members:
• None
• XSD

eConnectSchema String Optional. If you set the
ValidationType parameter to use
XSD validation,
you must specify the file path to the
.xsd file that contains the schema
definition.

eConnect_Requester Method

The eConnect_Requester method is part of the eConnectMethods class in the
Microsoft.Dynamics.GP.eConnect namespace. A sample for this method is as
follows:

//C#

ReturnData_TextBox.Text=eConnectObject.eConnect_Requester(C
onnectionString, EnumTypes.ConnectionStringType.SqlClient,
xmlDoc.OuterXml);

'VB .NET

ReturnData_TextBox.Text=eConnectObject.eConnect_Requester(C
onnectionString, EnumTypes.ConnectionStringType.SqlClient,
xmlDoc.OuterXml)

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-20

The eConnect_Requester method has three required parameters. This method
returns a string value that contains the XML document.

Parameter Data type Description
ConnectionString String Specifies the data

server and databases.

ConnectionType Microsoft.Dynamics.GP.eConnec
t.EnumTypes.ConnectionStringT
ype

Use the
ConnectionStringType
enumeration member
that specifies the type
of your data server.
ConnectionStringType
includes the following
members:
• SqlClient
• OleDB

sXml String An eConnect XML
document.

eConnectException Class

The eConnectException class allows you to catch and handle eConnect-specific
errors. If an error occurs during a call to either the eConnect_EntryPoint or
eConnect_Requester methods, eConnect throws an eConnectException object.
You can use the properties of the eConnectException object to identify the type
of error and its accompanying error message.

The eConnectException class inherits from the System.ApplicationException
class. eConnectException uses the properties of the parent class. Refer to the
.NET Framework documentation for information about the
System.ApplicationException class.

You must include code that can catch and handle eConnect exceptions. The most
common exception handling technique is to use try and catch block. The catch
statement allows you to specify the type of exception you want to handle. When
you catch an eConnectException, you can attempt to correct the error,
immediately report the error to the user, or record the error in a log.

//C#

//If an eConnect error occurs, display the error message

catch (eConnectException eConnectError)

{

ReturnData_TextBox.Text = eConnectError.Message;

}

//If an unexpected error occurs, display the error message

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-21

catch (Exception ex)

{

ReturnData_TextBox.Text = ex.Message;

}

'VB .NET

'If an eConnect error occurs, display the error message

Catch eConnectError as eConnectException

ReturnData_TextBox.Text = eConnectError.Message

'If an unexpected error occurs, display the error message

Catch ex As Exception

ReturnData_TextBox.Text = ex.Message

End Try

Microsoft.Dynamics.GP.eConnect.MiscRoutines
Assembly

The namespace that is used in the
Microsoft.Dynamics.GP.eConnect.MiscRoutines assembly is
Microsoft.Dynamics.GP.eConnect.MiscRoutines. This namespace contains
several classes that are used together with the classes that are contained in the
Microsoft.Dynamics.GP.eConnect namespace to integrate Microsoft Dynamics
GP transactions.

Class Description
GetNextDocNumbers Allows you to get the next available number for

several types of Microsoft Dynamics GP documents.

GetSopNumber Allows you to retrieve a SOP number for a sales
document. This class also allows you to return a SOP
number that was retrieved but not used.

PricingMethods Allows you to retrieve customer specific pricing.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-22

GetNextDocNumbers Class

The GetNextDocNumbers class inherits from the
System.EnterpriseService.ServicedComponent class. The GetNextDocNumbers
class has several methods. For more information about each method, refer to the
eConnect Programmer's Guide.

Method Description
GetNextGLJournalEntryNumber Use to retrieve the next general ledger

journal entry document number from
Microsoft Dynamics GP. Returns a string
that contains the requested general ledger
journal entry document number.

GetNextIVNumber Use to retrieve the next document number
for the specified type of Microsoft
Dynamics GP inventory document. Returns
a string that contains the inventory
document number.

GetNextPMPaymentNumber Use to retrieve the next payables
management document number from
Microsoft Dynamics GP. Returns a string
that contains the requested payables
management payment document number.

GetNextPONumber Use to retrieve the next purchase order
document number from Microsoft
Dynamics GP. Returns a string that
contains the requested purchase order
document number.

GetNextPOPReceiptNumber Use to retrieve the next purchase order
processing receipt document number from
Microsoft Dynamics GP. Returns a string
that contains the requested purchase order
processing receipt document number.

GetNextRMNumber Use to retrieve the next document number
for the specified type of Microsoft
Dynamics GP receivables management
document. Returns a string that contains
the requested receivables management
document number.

GetNextSOPNumber Use to retrieve the next document number
for the specified type of Microsoft
Dynamics GP sales order processing
document. Returns a string that contains
the requested SOP document number.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-23

Method Description
RollBackDocumentList Allows you to restore a Microsoft

Dynamics GP document number that was
retrieved using one of the previous
methods. The RollBackDocumentList
method requires an arraylist of
RollBackDocument objects that specify
the document numbers. The arraylist
allows you to restore a single document
number or several document numbers.

GetSopNumber Class

The GetSopNumber class also inherits from the
System.EnterpriseService.ServicedComponent class. The GetSopNumber class
returns the next sales order number and places the number back into the setup
table if the transaction was unsuccessful. The class is part of the
Microsoft.Dynamics.GP.eConnect.MiscRoutines namespace. The following
public methods are contained in the GetSopNumber class:

Method Description
GetNextSopNumber This method returns the next sales order number based

on setup options.

RollBackSopNumber Call this method to put an unused sales order number
back into the correct sales order setup table: SOP40200
or SOP40300.

PricingMethods Class

The PricingMethod class also inherits from the
System.EnterpriseService.ServicedComponent class. The PricingMethod class
retrieves customer specific pricing and is part of the
Microsoft.Dynamics.GP.eConnect.MiscRoutines namespace. The following
public methods are contained in the PricingMethods class:

Method Description
GetItemPricePerPriceLevelAndAllUnitsOfMeasure Returns item prices

per price level with all
units of measure
prices. The XML
document returned is
ordered by the base
unit of measure. The
first item price node is
the price for the base
unit of measure.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-24

Method Description
GetItemPriceForAllPriceLevelsAndAllUnitsOfMeasure Calculates the

appropriate price level
using Microsoft
Dynamics GP back
office rules. It uses
the Currency key to
calculate the price of
an item for each unit
of measure defined
for that item.

GetCustomerSpecificItemPriceForSellingUOFM Obtains the customer
specific pricing for
the default selling unit
of measure. This
method returns the
price for the specified
quantity breaks.

Microsoft.Dynamics.GP.eConnect.Serialization Assembly

The assembly contains the Microsoft.Dynamics.GP.eConnect.Serialization
namespace. The namespace includes classes that represent each eConnect
transaction type schema and XML node. To view the list of transaction type
schemas and XML nodes, refer to the Schema Reference and the XML Node
Reference in the eConnect help. The individual schema and XML node classes
can also be viewed in the Visual Studio Object Browser.

When using this assembly, serialize an object as XML to a file, and then create
an XML document object from the file. Then use the XML document to create a
new record in Microsoft Dynamics GP.

The eConnect serialization assembly includes classes with properties that use
serialization flags. A serialization flag specifies whether to use or discard the
value assigned to that property when creating an eConnect XML document.

The XML Node Reference identifies the elements within each XML node where
the eConnect serialization assembly includes a serialization flag. The
serialization flag in the eConnect serialization assembly always append the word
“Specified” to the element name. When you assign a value to a property that
includes a serialization flag, you must also set the serialization flag's value to
True.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-25

Creating Vendors with Microsoft.Dynamics.GP.eConnect.dll
In this demonstration you will see how to use the
Microsoft.Dynamics.GP.eConnect.dll assembly to create Vendors in Microsoft
Dynamics GP. In this demonstration:

• A Windows application is created and a reference is added to the
assembly

• Controls are added to the application
• Code is added to create a vendor
• The application is built and tested

Create a Project and Add a Reference

Follow these steps to create a project and add a reference to the
Microsoft.Dynamics.GP.eConnect assembly:

1. Create a Windows application in Visual Studio .NET 2005.
2. Add a reference to the Microsoft.Dynamics.GP.eConnect and

System.EnterpriseServices assemblies.
a. Click Project and then click Add Reference. On the Browse

tab, locate the Microsoft.Dynamics.GP.eConnect.dll, and then
click OK. The default path of this assembly is as follows:

C:\Program Files\Common Files\Microsoft
Shared\eConnect 10\Objects\Dot Net

b. Click Project and then click Add Reference again. On the .NET

tab, select the System.EnterpriseServices assembly, and then
click OK.

Add Controls to the Windows Application

Add controls to the Windows application according to the following table:

Control Property Value
Label1 (Name) lblVendorID

 Text Vendor ID:

Label2 (Name) lblVendorName

 Text Vendor Name:

Label3 (Name) lblAddressCode

 Text Address Code:

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-26

Control Property Value
Label4 (Name) lblContact

 Text Contact:

Label5 (Name) lblAddress1

 Text Address Line 1:

Label6 (Name) lblCityStateZip

 Text City, State, Zip:

Label7 (Name) lblTelephoneNumber

 Text TelephoneNumber:

TextBox1 (Name) txtVendorID

 Text blank

 TabIndex 1

TextBox2 (Name) txtVendorName

 Text Blank

 TabIndex 2

TextBox3 (Name) txtAddressCode

 Text blank

 TabIndex 3

TextBox4 (Name) txtContact

 Text Blank

 TabIndex 4

TextBox5 (Name) txtAddress1

 Text Blank

 TabIndex 5

TextBox6 (Name) txtCity

 Text blank

 TabIndex 6

TextBox7 (Name) txtState

 Text Blank

 TabIndex 7

TextBox8 (Name) txtZip

 Text blank

 TabIndex 8

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-27

Control Property Value
TextBox9 (Name) txtTelephoneNumber

 Text Blank

 TabIndex 9

Button1 (Name) btnCreate

 Text Create

 TabIndex 10

Label8 (Name) lblStatus

 Text Blank

 Visible False

Form1 (Name) frmVendorEntry

 Text Vendor Entry Form

After you add controls to the form, it resembles the image.

FIGURE 7.5 VENDOR ENTRY FORM LAYOUT

Add Code to Create a Vendor

Follow these steps to add code to create a vendor:

1. In the class, add using or Imports statements for the
Microsoft.Dynamics.GP.eConnect and System.Text (if it does not
already exist) namespaces.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-28

2. In the click event of the Create button, add code to do the following:
a. Declare a string variable. Set the value of the variable to an

XML string that contains the data entered in the text boxes.
b. Set the Connection String.
c. Declare a new object that uses the eConnectMethods class.
d. Declare a status variable as Boolean.
e. Call the eConnect_EntryPoint method to create the vendor.
f. If the vendor is created successfully, set the Text property of the

status label to Success, and then show the label.
g. If any eConnect error messages are encountered, set the Text

property of the status label to the error message, and then show
the label.

//C#
private void btnCreate_Click(object sender, EventArgs e)
{
try
{
StringBuilder xml = new StringBuilder();
xml.Append(“<eConnect>”);
xml.Append(“<PMVendorMasterType>”);
xml.Append(“<taUpdateCreateVendorRcd>”);
xml.Append(“<VENDORID>” + txtVendorID.Text.ToUpper() +
“</VENDORID>”);
xml.Append(“<VENDNAME>” + txtVendorName.Text +
“</VENDNAME>”);
xml.Append(“<VADDCDPR>” + txtAddressCode.Text +
“</VADDCDPR>”);
xml.Append(“<VNDCNTCT>” + txtContact.Text + “</VNDCNTCT>”);
xml.Append(“<ADDRESS1>” + txtAddress1.Text +
“</ADDRESS1>”);
xml.Append(“<CITY>” + txtCity.Text + “</CITY>”);
xml.Append(“<STATE>” + txtState.Text + “</STATE>”);
xml.Append(“<ZIPCODE>” + txtZip.Text + “</ZIPCODE>”);
xml.Append(“<PHNUMBR1>” + txtTelephoneNumber.Text +
“</PHNUMBR1>”);
xml.Append(“</taUpdateCreateVendorRcd>”);
xml.Append(“</PMVendorMasterType>”);
xml.Append(“</eConnect>”);

string connString =“Data Source=London; Initial
Catalog=TWO; Integrated Security=SSPI; Persist Security
Info=False;”;

eConnectMethods eConCall = new eConnectMethods();

bool status;

status = eConCall.eConnect_EntryPoint(connString,
EnumTypes.ConnectionStringType.SqlClient, xml.ToString(),
EnumTypes.SchemaValidationType.None, “”);

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-29

if (status)
{
lblStatus.Text =“Document Successful”;
lblStatus.Visible = true;

}
}

catch (eConnectException ex)
{
lblStatus.Text = ex.Message;
lblStatus.Visible = true;
}
}

'VB .NET
Private Sub btnCreate_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnCreate.Click

Try
Dim xml As New StringBuilder()
xml.Append(“<eConnect>”)
xml.Append(“<PMVendorMasterType>”)
xml.Append(“<taUpdateCreateVendorRcd>”)
xml.Append(“<VENDORID>” + txtVendorID.Text.ToUpper() +
“</VENDORID>”)
xml.Append(“<VENDNAME>” + txtVendorName.Text +
“</VENDNAME>”)
xml.Append(“<VADDCDPR>” + txtAddressCode.Text +
“</VADDCDPR>”)
xml.Append(“<VNDCNTCT>” + txtContact.Text + “</VNDCNTCT>”)
xml.Append(“<ADDRESS1>” + txtAddress1.Text + “</ADDRESS1>”)
xml.Append(“<CITY>” + txtCity.Text + “</CITY>”)
xml.Append(“<STATE>” + txtState.Text + “</STATE>”)
xml.Append(“<ZIPCODE>” + txtZip.Text + “</ZIPCODE>”)
xml.Append(“<PHNUMBR1>” + txtTelephoneNumber.Text +
“</PHNUMBR1>”)
xml.Append(“</taUpdateCreateVendorRcd>”)
xml.Append(“</PMVendorMasterType>”)
xml.Append(“</eConnect>”)

Dim connString As String
connString =“Data Source= London; Initial Catalog=TWO;
Integrated Security=SSPI; Persist Security Info=False;”

Dim eConCall As New eConnectMethods()
Dim status As Boolean

status = eConCall.eConnect_EntryPoint(connString,
EnumTypes.ConnectionStringType.SqlClient, xml.ToString(),
EnumTypes.SchemaValidationType.None, “”)

If status = True Then
lblStatus.Text =“Document Successful”
lblStatus.Visible = True
End If

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-30

Catch ex As eConnectException
lblStatus.Text = ex.Message
lblStatus.Visible = True
End Try
End Sub

Build and Test the Application

Build the application by clicking Build and then Build Solution. Correct any
error messages that are returned. Then test the customization by following these
steps:

1. Run the solution, enter data in the text boxes, and watch for the
message that states that the document was successfully created.

2. In Microsoft Dynamics GP, open the Vendor card. Click Cards,
point to Purchasing, and then click Vendor. Click the lookup and
select the newly created vendor.

Extend eConnect Business Logic
As you build integrations, you may need to include additional business logic to
solve a specific business problem. When you use eConnect, there are several
methods that you can use to add the appropriate business logic. You can add an
additional XML node to the existing XML schema and use custom pre- and post
stored procedures.

Add Additional XML Nodes

eConnect allows you to add XML nodes to its document schema. Custom XML
nodes enable you to use custom data elements within an eConnect XML
document. Use custom data elements to provide additional data or to trigger
custom business logic.

When eConnect processes an XML document, it maps the name of each XML
node to a SQL stored procedure. The following XML creates a node named
<eConnectCustomProcedure>:

<eConnectCustomProcedure>

<CUSTNMBR>CONTOSOL0002</CUSTNMBR>

</eConnectCustomProcedure>

When eConnect processes a document containing the eConnectCustomProcedure
node, it looks for a SQL stored procedure with the same name, in this case
eConnectCustomProcedure. You must create the eConnectCustomProcedure
stored procedure to handle your custom XML node.

To create a custom XML node you must:

• Define the data elements of your custom XML node

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-31

• Provide each element with a unique name
• Add the XML node to an existing eConnect transaction type

Use the eConnect XML document's <eConnectProcessInfo> node to control the
stored procedures’ order of execution. To execute the eConnect core stored
procedures prior to any custom stored procedures, set the
<eConnectProcsRunFirst> element to TRUE. To execute custom stored
procedures prior to the eConnect core stored procedures, set
<eConnectProcRunFirst> to FALSE.

The following XML document example adds the <eConnectCustomProcedure>
XML node to a customer eConnect XML document. Notice how the custom node
is added within the <RMCustomerMasterType> transaction type.

<eConnect xmlns:dt=“urn:schemas-microsoft-com:datatypes”>

<RMCustomerMasterType>

<eConnectProcessInfo>

<eConnectProcsRunFirst>TRUE</eConnectProcsRunFirst>

</eConnectProcessInfo>

<eConnectCustomProcedure>

<CUSTNMBR>CONTOSOL0002</CUSTNMBR>

</eConnectCustomProcedure>

<taUpdateCreateCustomerRcd>

<CUSTNMBR>CONTOSOL0002</CUSTNMBR>

<CUSTNAME>Contoso, Ltd.</CUSTNAME>

<TAXSCHID>USALLEXMPT-0</TAXSCHID>

<SHIPMTHD>PICKUP</SHIPMTHD>

<ADDRESS1>321 Main S </ADDRESS1>

<CITY>Valley City</CITY>

<STATE>ND</STATE>

<ZIPCODE>56789</ZIPCODE>

<COUNTRY>USA</COUNTRY>

<PHNUMBR1>13215550100</PHNUMBR1>

<PHNUMBR2>13215550110</PHNUMBR2>

<FAX>13215550120</FAX>

<SALSTERR>TERRITORY 6 </SALSTERR>

<SLPRSNID>SEAN C .</SLPRSNID>

<SLPRSNFN>Sean</SLPRSNFN>

<SPRSNSLN>Chai</SPRSNSLN>

<UPSZONE>red</UPSZONE>

<CNTCPRSN>Joe Healy</CNTCPRSN>

<CHEKBKID>PAYROLL</CHEKBKID>

<PYMTRMID>Net 30 </PYMTRMID>

<COMMENT1>comment1</COMMENT1>

<COMMENT2>comment2</COMMENT2>

<USERDEF1>Retail</USERDEF1>

<PRBTADCD>PRIMARY</PRBTADCD>

<PRSTADCD>PRIMARY</PRSTADCD>

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-32

<ADRSCODE>PRIMARY</ADRSCODE>

<STADDRCD>PRIMARY</STADDRCD>

<CRCARDID>Gold Credit </CRCARDID>

<STMTNAME>Contoso, Ltd.</STMTNAME>

<SHRTNAME>Contoso, Ltd.</SHRTNAME>

<Revalue_Customer>1</Revalue_Customer>

<Post_Results_To>0</Post_Results_To>

<CRLMTAMT>90000.00</CRLMTAMT>

</taUpdateCreateCustomerRcd>

</RMCustomerMasterType>

</eConnect>

Create a Stored Procedure

When you add a custom XML node to an eConnect XML documents, you must
supply a SQL stored procedure to process that node. The previous procedure
added the <eConnectCustomProcedure> node to an XML document. To process
XML documents that contain this node, create a stored procedure with a name
that exactly matches the name of the XML node. To continue the
<eConnectCustomProcedure> example, the stored procedure must be named
eConnectCustomProcedure.

The custom stored procedure's parameters must include the following:

• The stored procedure must provide an input parameter for each
element of the custom XML node.

• The stored procedure's input parameters must match the order of the
elements in the custom XML node.

• To comply with eConnect's error handling process, include two
output parameters. Name the output parameters ErrorState and
ErrString.

The following SQL example creates a stored procedure for the
<eConnectCustomProcedure> XML node. Notice how the procedure is named,
the way the XML node's data element maps to the input parameter, and the
implementation of error handling:

/* Begin_Procs eConnectCustomProcedure */

if exists (select * from dbo.sysobjects where id =
Object_id('dbo.eConnectCustomProcedure‘) and type = ‘P’)

begin

drop proc dbo.eConnectCustomProcedure

end

go

create procedure dbo.eConnectCustomProcedure

@I_vCUSTNMBR char(15), /* Customer Number - only required
field */

@O_iErrorState int output, /* Return value: 0 = No Errors,
Any Errors > 0 */

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-33

@oErrString varchar(255) output /* Return Error Code List
*/

as

declare

@CUSTBLNC int,

@O_oErrorState int,

@iError int,

@iStatus smallint,@iAddCodeErrState int

/***** Initialize locals*****/

select

@O_iErrorState = 0,

@oErrString = ‘’,

@iStatus = 0,

@iAddCodeErrState = 0

/*****Custom Procedure edit check validation*****/

/*If the @I_vCUSTNMBR variable is ‘’ then we need to add
the error code */

/*35010 to the @oErrString output variable.*/

/*The method that eConnect uses to append all error string
is the */

/*taUpdateString procedure.*/

/*Error codes can be appended to the @oErrString variable:
for example you */

/*could append a 33 44 55 66 to the @oErrString variable */

/*After the error codes have been appended to the
@oErrString variable. */

/*****/

if (@I_vCUSTNMBR = ‘’)

begin

select @O_iErrorState = 35010 /* Customer number is empty
*/

exec @iStatus = taUpdateString

@O_iErrorState,

@oErrString,

@oErrString output,

@iAddCodeErrState output

end

/* Do some custom business logic */

select @CUSTBLNC = CUSTBLNC

from RM00103 (nolock)

where CUSTNMBR = @I_vCUSTNMBR

/* End custom business logic */

return (@O_iErrorState)

go

grant execute on dbo.eConnectCustomProcedure to DYNGRP

go

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-34

Modify Business Logic

When you use Microsoft Dynamics GP Utilities to create a company, the creation
process places all the eConnect stored procedures for that company's database on
the Microsoft Dynamics GP SQL server. These stored procedures contain
eConnect's business logic. You cannot modify any of the eConnect core stored
procedures.

When eConnect processes an XML document, it executes a SQL stored
procedure for each XML node in the document. When the stored procedure
executes, it executes its pre- and post SQL stored procedures.

• The pre- stored procedure runs prior to the core stored procedure
• The post stored procedure runs immediately after the core stored

procedure

The eConnect pre- and post stored procedures include two output parameters to
implement custom error handling. The error-handling parameters are as follows:

• The pre- and post stored procedures use the ErrorState parameter to
specify whether an error occurred. The core eConnect stored
procedure checks the value of the pre- and post stored procedures’
ErrorState parameter. If an error is encountered during custom
processing, set ErrorState to a non-zero value. This causes the
eConnect stored procedure to halt and roll back the transaction.

• The pre- and post stored procedures include an ErrString output
parameter. If an error is encountered during custom processing, use
the ErrString parameter to describe the error.

Extend Business Logic Using Pre- and Post Procedures

To modify eConnect's business logic, place custom SQL code in the pre- or post
procedures. To customize a Pre- or Post stored procedure, complete the following
steps:

1. Open the .sql file for the stored procedure. eConnect supplies a file
for each Pre- and Post stored procedure you can modify. To find a
specific file, open the directory C:\Program Files\Common
Files\Microsoft Shared\eConnect 10\Custom Procedures. This
directory contains a subdirectory for each transaction type schema.
Open the subdirectory that contains the stored procedure you want to
modify. Edit the .sql file using any text editor or Microsoft SQL
Server Management Studio.

2. Add custom SQL code to the file. The only parts of the document to
change are the Revision History and the section of the file specified
for custom business logic. SQL code must be added between the
following comments:

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-35

/* Create Custom Business Logic */

/* End Create Custom Business Logic */

To avoid errors or unexpected results, do not modify any other
statements in the file. After you add the custom business logic, save
the file.

3. Open and run the .sql file in Microsoft SQL Server Management
Studio. Use the drop-down list from the toolbar to specify the
Microsoft Dynamics GP database that contains the target stored
procedure, then click the Execute button. The Query Messages
window displays whether the stored procedure was successfully
updated.

Use Custom XML Nodes
Your customer has requested that additional data be saved when a Customer is
created or updated. They want the additional data saved to a new table in their
SQL database. This demonstration helps you become more familiar with using
stored procedure logic together with adding a custom XML node. Included in this
demonstration is how to create a new SQL table and stored procedure.

Create a New SQL Table

Create a new table in the TWO database.

1. Name the table RM00101EXT.
2. Click Start, point to Programs, point to Microsoft SQL Server

2005, and then click SQL Server Management Studio.
3. Connect to the SQL Server.
4. Click New Query, change the database to TWO, and in the Query

editor, type the following script to create the new table with three
columns, CUSTNMBR, CUSTNAME, and CUSTOMERCODE:

if exists (select * from dbo.sysobjects where id =
Object_id('dbo.RM00101EXT') and type = 'U')

begin
drop table dbo.RM00101EXT
end
go

create table RM00101EXT (CUSTNMBR char(30), CUSTNAME
char(50), CUSTOM ERCODE char(15))
go

5. Verify the script by clicking Query and then clicking Parse.
6. Execute the script by clicking Query and then clicking Execute.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-36

Create a Custom Stored Procedure

Create a custom stored procedure that inserts the Customer Number and
Customer Name value in the RM00101EXT table when a customer is created or
updated by using eConnect. The custom stored procedure contains error
checking.

1. Click New Query, and then type the following script in the Query
editor:

/* Begin_Procs taUpdateCreateCustomerRcdCUSTOM */

if exists (select * from dbo.sysobjects where id =
Object_id('dbo.taUpdateCreateCustomerRcdCUSTOM‘) and type =
‘P’)

begin

drop proc dbo.taUpdateCreateCustomerRcdCUSTOM

end

go

create procedure dbo.taUpdateCreateCustomerRcdCUSTOM

/* Customer Number - only required field */

@I_vCUSTNMBR char(15),

/* Customer Name */

@I_vCUSTNAME char(64),

/* Customer Code */

@I_vCUSTOMERCODE char(15) = ‘’,

/* Return value: 0=No Errors, 1=Error Occurred */

@O_iErrorState int output,

/* Return Error Code List */

@oErrString varchar(255) output

with encryption

as

declare

@dtDEFAULT datetime,

@iStatus int,

@O_oErrorState int

/*****Initialize locals*****/

select @O_iErrorState = 0,

@iStatus = 0

if (@oErrString is null)

begin

select @oErrString = ‘’

end

/*****data validation*****/

if (@I_vCUSTNMBR is null or

@I_vCUSTNAME is null or

@I_vCUSTOMERCODE is null

)

begin

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-37

select @O_iErrorState = 35000 /* At least one input
variable contains a null value */

exec @iStatus = taUpdateString

@O_iErrorState,

@oErrString,

@oErrString output,

@O_oErrorState output

return (@O_iErrorState)

end

/*****Master Records in Upper Case*****/

select @I_vCUSTNMBR = upper(@I_vCUSTNMBR)

if (@I_vCUSTNMBR = ‘’)

begin

select @O_iErrorState = 35001 /* Customer number is empty
*/

exec @iStatus = taUpdateString

@O_iErrorState,

@oErrString,

@oErrString output,

@O_oErrorState output

return (@O_iErrorState)

end

if @I_vCUSTNAME = ‘’

select @I_vCUSTNAME = @I_vCUSTNMBR

select @O_iErrorState = 0, @dtDEFAULT = ‘’

/*****Create/Update Number*****/

if (@O_iErrorState = 0)

begin

insert into RM00101EXT (

CUSTNMBR,

CUSTNAME,

CUSTOMERCODE

)

select

@I_vCUSTNMBR,

@I_vCUSTNAME,

@I_vCUSTOMERCODE

if @@error <> 0

begin

select @O_iErrorState = 35002 /* Unable to insert into the
Customer Master Extension table (RM00101EXT) */

exec @iStatus = taUpdateString

@O_iErrorState,

@oErrString,

@oErrString output,

@O_oErrorState output

return (@O_iErrorState)

end

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-38

end

return (@O_iErrorState)

go

grant execute on dbo.taUpdateCreateCustomerRcdCUSTOM to
DYNGRP

go

/* End_Procs taUpdateCreateCustomerRcdCUSTOM */

2. Make sure that the database is still set to TWO.
3. Verify the script by clicking Query and then clicking Parse.
4. Execute the script by clicking Query and then clicking Execute.

Create an XML Document

Create an XML document in a text editor that contains data to be passed to the
custom stored procedure when you create or update a Customer record. The
stored procedure updates the new table. In the XML document, set the following
items:

Node Element Value
eConnectProcessInfo eConnectProcsRunFirst FALSE

taUpdateCreateCustomer
Rcd

UpdateIfExists 1

taUpdateCreateCustomer
RcdCUSTOM

CUSTNMBR CUSTNUMB1

taUpdateCreateCustomer
RcdCUSTOM

CUSTNAME Customer Company

taUpdateCreateCustomer
RcdCUSTOM

CUSTOMERCODE Leave blank

Use the following XML to help you create the XML document:

<!-- Customer Create Record and Address -->

<eConnect xmlns:dt=“urn:schemas-microsoft-com:datatypes”>

<SMCustomerMasterType>

<eConnectProcessInfo>

<ConnectionString />

<Outgoing />
<eConnectProcsRunFirst>FALSE</eConnectProcsRunFirst>

<MessageID />

<SiteID />

<DocumentName />

<Version />

<DateTimeStamp1 />

<DateTimeStamp2 />

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-39

<DateTimeStamp3 />

<DateTimeStamp4 />

<DateTimeStamp5 />

<Userdef1 />

<Userdef2 />

<Userdef3 />

<Userdef4 />

<Userdef5 />

<ProcReturnCode />

</eConnectProcessInfo>

<taUpdateCreateCustomerRcd>

<CUSTNMBR>CUSTNUMB1</CUSTNMBR>

<CUSTNAME>Customer Company</CUSTNAME>

<CUSTCLAS>USA-IAKSNE-T3</CUSTCLAS>

<TAXSCHID>USASTCITY-6*</TAXSCHID>

<SHIPMTHD>UPS GROUND</SHIPMTHD>

<ADDRESS1>oak street</ADDRESS1>

<CITY>Fargo</CITY>

<STATE>ND</STATE>

<ZIPCODE>58103</ZIPCODE>

<COUNTRY>USA</COUNTRY>

<PHNUMBR1>51555235550000</PHNUMBR1>

<PHNUMBR2>61664664660000</PHNUMBR2>

<FAX>71747737770000</FAX>

<SALSTERR>TERRITORY 4</SALSTERR>

<SLPRSNID>PAUL W.</SLPRSNID>

<SLPRSNFN>Paul</SLPRSNFN>

<SPRSNSLN>West</SPRSNSLN>

<UPSZONE>Red</UPSZONE>

<CNTCPRSN>CPerson1</CNTCPRSN>

<CHEKBKID>PAYROLL</CHEKBKID>

<PYMTRMID>Net 30</PYMTRMID>

<COMMENT1>Test</COMMENT1>

<COMMENT2>Test 2</COMMENT2>

<USERDEF1>Retail</USERDEF1>

<PRBTADCD>PRIMARY</PRBTADCD>

<PRSTADCD>PRIMARY</PRSTADCD>

<ADRSCODE>PRIMARY</ADRSCODE>

<STADDRCD>PRIMARY</STADDRCD>

<UpdateIfExists>1</UpdateIfExists>

<CRCARDID>Bankcard</CRCARDID>

<CRCRDNUM>1234 5678 9012 3456</CRCRDNUM>

<CCRDXPDT>1900-01-01</CCRDXPDT>

<STMTNAME>Customer Company</STMTNAME>

<SHRTNAME>CustComp</SHRTNAME>

<Revalue_Customer>1</Revalue_Customer>

<Post_Results_To>0</Post_Results_To>

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-40

<CRLMTAMT/>

<USRDEFND5>CUSTCODE3</USRDEFND5>

</taUpdateCreateCustomerRcd>

<taCreateCustomerAddress_Items>

<taCreateCustomerAddress>

<CUSTNMBR>CUSTNUMB1</CUSTNMBR>

<ADRSCODE>PRIMARY</ADRSCODE>

<SLPRSNID />

<SHIPMTHD>UPS GROUND</SHIPMTHD>

<TAXSCHID>USASTCITY-6*</TAXSCHID>

<CNTCPRSN>Person2</CNTCPRSN>

<ADDRESS1>Suite 29</ADDRESS1>

<ADDRESS2>5th avenue</ADDRESS2>

<COUNTRY>USA</COUNTRY>

<CITY>Fargo</CITY>

<STATE>ND</STATE>

<ZIPCODE>58102</ZIPCODE>

<PHNUMBR1 />

<FAX />

</taCreateCustomerAddress>

</taCreateCustomerAddress_Items>

<taUpdateCreateCustomerRcdCUSTOM>

<CUSTNMBR>CUSTNUMB1</CUSTNMBR>

<CUSTNAME>Customer Company</CUSTNAME>

<CUSTOMERCODE>CUSTCODE2</CUSTOMERCODE>

</taUpdateCreateCustomerRcdCUSTOM>

</SMCustomerMasterType>

</eConnect>

Save the document as RM00101EXT.xml at C:\Test. Create the folder Test if it
does not already exist.

Create a Console Application

Create a Console Application in Visual Studio .NET 2005 that calls the
eConnectMethods.eConnect_EntryPoint method in the
Microsoft.Dynamics.GP.eConnect.dll assembly to create the Customer record.

1. Add a reference to the Microsoft.Dynamics.GP.eConnect.dll by
clicking Project, and then clicking Add Reference. On the Browse
tab, locate the Microsoft.Dynamics.GP.eConnect.dll, and then click
OK.

2. Add a reference to the System.EnterpriseServices namespace by
clicking Project, and then clicking Add Reference. On the .NET
tab, locate the System.EnterpriseServices.dll, and then click OK.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-41

3. In the class, add using or Imports statements for the
Microsoft.Dynamics.GP.eConnect and System.IO namespaces.

4. Create a new method named CreateCustomer. In this method:
a. Read the XML file that was created.
b. Declare a variable for the connection string to the desired

Microsoft Dynamics GP database.
c. Declare a new object by using the eConnectMethods class and a

status variable as Boolean.

//C#

private void CreateCustomer()

{

try

{

string data;

using (StreamReader sr = new
StreamReader(@“C:\test\RM00101ext.xml”))

{

TextReader reader = sr;

data = reader.ReadToEnd();

}

string connString =“data source=London;initial catalog =
TWO;integrated security=SSPI;persist security info =
False;packet size = 4096”;

eConnectMethods eConCall = new eConnectMethods();

bool status;

'VB .NET

Class Program

Sub CreateCustomer()

Dim data As String

Dim sr As New StreamReader(“C:\test\RM00101ext.xml”)

Dim reader As TextReader = sr

Try

data = reader.ReadToEnd()

Dim connString As String

connString =“data source= London;initial catalog =
TWO;integrated security=SSPI;persist security info =
False;packet size = 4096”

Dim eConCall As New eConnectMethods

Dim status As Boolean

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-42

Use the eConnect_EntryPoint Method

Use the eConCall.eConnect_EntryPoint method to send the data to Microsoft
Dynamics GP. This method call returns true or false to indicate success or
failure, respectively. Set the status variable equal to the result of this method call.

//C#

status = eConCall.eConnect_EntryPoint(connString,
EnumTypes.ConnectionStringType.SqlClient, data,
EnumTypes.SchemaValidationType.None, "");

'VB .NET

status = eConCall.eConnect_EntryPoint(connString,
EnumTypes.ConnectionStringType.SqlClient, data,
EnumTypes.SchemaValidationType.None, "")

Write to the Console

Write to the console if the method call was successful and catch eConnect
exceptions if the method call failed:

//C#

if (status)

{

System.Console.Out.WriteLine("Document Successful");

}

}

catch (eConnectException ex)

{

System.Console.Out.WriteLine(ex.Message);

}

}

'VB .NET

If status = True Then

System.Console.Out.WriteLine("Document Successful")

End If

Catch ex As eConnectException

System.Console.Out.WriteLine(ex.Message)

Finally

sr.Close()

End Try

End Sub

End Class

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-43

Call the CreateCustomer Method and Test the Solution

Call the CreateCustomer method from Main.

//C#

static void Main(string[] args)

{

Program myProgram = new Program();

myProgram.CreateCustomer();

}

'VB .NET

Sub Main()

Dim myProgram As New Program()

myProgram.CreateCustomer()

End Sub

Then, follow these steps to test the solution:

1. Build the application by clicking Build and then Build Solution.
Correct any error messages that are returned.

2. Run the solution and watch for the message that states that the
document was successfully created.

3. In Microsoft Dynamics GP, open the Customer card. Click Cards,
point to Sales, and then click Customer. Click the lookup and select
the newly created customer.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-44

Lab 7.1 - Use the
Microsoft.Dynamics.GP.eConnect.Serialization.dll to Create
Sales Invoices

Scenario

Your client wants a Windows application they can use to enter Sales Invoices.
You decide to use eConnect directly to create the records in Microsoft Dynamics
GP. As you create your solution, you discover that serializing the Sales Invoice is
the best option.

Challenge Yourself
1. Create a new Windows Application and add controls to the form

according to the following table:

Control Property Value
Label1 (Name) lblCustomerNumber

 Text Customer Number:

Label2 (Name) lblItemNumber

 Text Item Number:

Label3 (Name) lblQuantity

 Text Quantity:

TextBox1 (Name) txtCustomerNumber

 Text Blank

 TabIndex 1

TextBox2 (Name) txtItemNumber

 Text Blank

 TabIndex 2

TextBox3 (Name) txtQuantity

 Text Blank

 TabIndex 3

Button1 (Name) btnSubmit

 Text &Submit

 TabIndex 4

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-45

Control Property Value
Form1 (Name) frmSalesInvoiceEntry

 Text Sales Invoice Quick Entry Form

 AcceptButton btnSubmit

 Size 305, 114

2. Add the references needed by this application.
3. Add using or Imports statements for the namespaces that to use in

the application.
4. Create a method that accepts one string parameter. In the method

create the required eConnect objects and serialize the objects into
XML.

5. Get the next Sales Invoice number, and then call the method created
in step 4 from the click event of the Submit button. Use the resulting
XML and call the appropriate eConnect method to create the Sales
Invoice.

6. Build the solution and correct any error messages that are returned.
7. Test the solution and confirm that the Sales Invoice has been created

in Microsoft Dynamics GP.

Need a Little Help?
1. Create a new Windows Application named SerializeSalesInvoice in

the C:\NetProjects folder.
2. Add controls to the form according to the following table:

Control Property Value
Label1 (Name) lblCustomerNumber

 Text Customer Number:

Label2 (Name) lblItemNumber

 Text Item Number:

Label3 (Name) lblQuantity

 Text Quantity:

TextBox1 (Name) txtCustomerNumber

 Text Blank

 TabIndex 1

TextBox2 (Name) txtItemNumber

 Text Blank

 TabIndex 2

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-46

Control Property Value
TextBox3 (Name) txtQuantity

 Text Blank

 TabIndex 3

Button1 (Name) btnSubmit

 Text &Submit

 TabIndex 4

Form1 (Name) frmSalesInvoiceEntry

 Text Sales Invoice Quick Entry Form

 AcceptButton btnSubmit

 Size 305, 114

3. Add the references needed by this application:
• System.EnterpriseServices
• Microsoft.Dynamics.GP.eConnect.dll
• Microsoft.Dynamics.GP.eConnect.Serialization.dll

4. Add using or Imports statements for the eConnect assemblies and the
System.IO, System.XML, System.Xml.Serialization, and
System.EnterpriseServices namespaces.

5. Create a method that accepts one string parameter. In the method
create the required eConnect objects and serialize the objects into
XML.

6. Get the next Sales Invoice number, and then call the SerializeDoc
method from the click event of the Submit button. Use the resulting
XML when you call the eConnect_EntryPoint method to create the
Sales Invoice.

7. Build the application by clicking Build and then Build
SerilaizeSalesInvoice. Correct any error messages that are returned.

8. Test the solution. Enter data on the form, and then click Submit to
send the data into Microsoft Dynamics GP.

9. In Microsoft Dynamics GP, open the new Sales Invoice.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-47

Summary
eConnect provides an alternative when the Web Services for Microsoft Dynamics
GP do not meet business requirements. Install the runtime version of eConnect
and then create an application that uses the eConnect .NET assemblies. Extend
applications that use eConnect by:

• Adding additional XML nodes
• Creating stored procedures
• Modifying the eConnect pre- and post stored procedures

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-48

Test Your Knowledge
Test your knowledge with the following questions.

eConnect Architecture Overview

1. What are the eConnect business objects and where do they reside?

eConnect Basics

2. What key must you change in the eConnect_Incoming.exe.config file after
the Incoming Service is installed?

() MicrosoftDynamicsGP.ConnectionString
() BackOffice.ConnectionString
() eConnect.ConnectionString
() eConnect.BackOffice.ConnectionString

eConnect .NET Assemblies

3. What method in the Microsoft.Dynamics.GP.eConnect assembly do you use
to integrate data into Microsoft Dynamics GP?

() eConnectMethods.eConnect_EntryPoint
() eConnectMethods.eConnect_Requester
() EnumTypes.eConnect_EntryPoint
() EnumTypes.eConnect_Requester

4. You can obtain the next sales document number by using the
GetNextSopNumber method.

() True
() False

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-49

Lab 7.1 - Use the
Microsoft.Dynamics.GP.eConnect.Serialization.dll to Create
Sales Invoices (Solution)

Scenario

Your client wants a Windows application they can use to enter Sales Invoices.
You decide to use eConnect directly to create the records in Microsoft Dynamics
GP. As you create your solution, you discover that serializing the Sales Invoice is
the best option.

Step by Step
1. Create a new Windows application. Set the project name to

eConnect_SerializeSalesInvoice, the folder location to
C:\NetProjects, and then click OK.

2. Add controls to the form according to the following table:

Control Property Value
Label1 (Name) lblCustomerNumber

 Text Customer Number:

Label2 (Name) lblItemNumber

 Text Item Number:

Label3 (Name) lblQuantity

 Text Quantity:

TextBox1 (Name) txtCustomerNumber

 Text Blank

 TabIndex 1

TextBox2 (Name) txtItemNumber

 Text Blank

 TabIndex 2

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-50

Control Property Value
TextBox3 (Name) txtQuantity

 Text Blank

 TabIndex 3

Button1 (Name) btnSubmit

 Text &Submit

 TabIndex 4

Form1 (Name) frmSalesInvoiceEntry

 Text Sales Invoice Quick Entry Form

 AcceptButton btnSubmit

 Size 305, 114

The form may resemble the image when you are finished adding controls:

FIGURE 7.6 SALES INVOICE QUICK ENTRY FORM

3. Add the references needed by this application:
a. Click Project, and then click Add Reference. On the .NET tab,

select the System.EnterpriseServices assembly and then click
OK.

b. Click Project, and then click Add Reference. On the Browse
tab, locate the following folder:

C:\Program Files\Common Files\Microsoft Shared\
eConnect 10\Objects\Dot Net

Select the following assemblies, and then click OK:

• Microsoft.Dynamics.GP.eConnect.dll
• Microsoft.Dynamics.GP.eConnect.MiscRoutines.dll
• Microsoft.Dynamics.GP.eConnect.Serialization.dll

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-51

4. Add using statements for the eConnect assemblies and the
System.IO, System.Xml.Serialization, and System.Xml namespaces.
In VB .NET, add an Imports statement for the System.Text
namespace. This namespace is already present in the C# application.

//C#

using Microsoft.Dynamics.GP.eConnect;

using Microsoft.Dynamics.GP.eConnect.Serialization;

using Microsoft.Dynamics.GP.eConnect.MiscRoutines;

using System.IO;

using System.Xml.Serialization;

using System.Xml;

'VB .NET

Imports Microsoft.Dynamics.GP.eConnect

Imports Microsoft.Dynamics.GP.eConnect.Serialization

Imports Microsoft.Dynamics.GP.eConnect.MiscRoutines

Imports System.IO

Imports System.Xml.Serialization

Imports System.Xml

Imports System.Text

5. Create a method that accepts one string parameter to serialize the

information entered on the Windows Form. Remember to include try
and catch blocks to capture eConnect exceptions.

//C#

private void SerializeDoc(string SopNumber)

{

try

{

}

catch (eConnectException ex)

{

MessageBox.Show(ex.Message);

}

catch (Exception ex)

{

MessageBox.Show(ex.Message);

}

}

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-52

'VB .NET

Private Sub SerializeDoc(ByVal SopNumber As String)

Try

Catch ex As eConnectException

MessageBox.Show(ex.Message)

Catch ex As Exception

MessageBox.Show(ex.Message)

End Try

End Sub

6. Create the objects for the sales transaction including the

SOPTransactionType, line items, and header objects. In this lab, the
sales invoice has only one sales item. Put the following code in the
try code block:

//C#

SOPTransactionType soptrx = new SOPTransactionType();

taSopLineIvcInsert_ItemsTaSopLineIvcInsert[] lineItems =
new taSopLineIvcInsert_ItemsTaSopLineIvcInsert[1];

taSopHdrIvcInsert ivcHeader = new taSopHdrIvcInsert();

taSopLineIvcInsert_ItemsTaSopLineIvcInsert ivcLine = new
taSopLineIvcInsert_ItemsTaSopLineIvcInsert();

'VB .NET

Dim soptrx As New SOPTransactionType()

Dim lineItems As
taSopLineIvcInsert_ItemsTaSopLineIvcInsert() = New
taSopLineIvcInsert_ItemsTaSopLineIvcInsert(1) {}

Dim ivcHeader As New taSopHdrIvcInsert()

Dim ivcLine As New
taSopLineIvcInsert_ItemsTaSopLineIvcInsert()

7. Set the properties on the header and line item objects.

//C#

ivcHeader.SOPTYPE = 3;

ivcHeader.DOCID ="STDINV";

ivcHeader.SOPNUMBE = SopNumber;

ivcHeader.DOCDATE = DateTime.Today.ToString("MM/dd/yyyy");

ivcHeader.CUSTNMBR = txtCustomerNumber.Text;

ivcHeader.BACHNUMB ="DOCS";

ivcHeader.PRSTADCD ="PRIMARY";

ivcLine.SOPTYPE = ivcHeader.SOPTYPE;

ivcLine.DOCID = ivcHeader.DOCID;

ivcLine.DOCDATE = ivcHeader.DOCDATE;

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-53

ivcLine.SOPNUMBE = ivcHeader.SOPNUMBE;

ivcLine.CUSTNMBR = ivcHeader.CUSTNMBR;

ivcLine.ITEMNMBR = txtItemNumber.Text;

ivcLine.QUANTITY = Convert.ToDecimal(txtQuantity.Text);

'VB .NET

ivcHeader.SOPTYPE = 3

ivcHeader.DOCID ="STDINV"

ivcHeader.SOPNUMBE = SopNumber

ivcHeader.DOCDATE = DateTime.Today.ToString("MM/dd/yyyy")

ivcHeader.CUSTNMBR = txtCustomerNumber.Text

ivcHeader.BACHNUMB ="DOCS"

ivcHeader.PRSTADCD ="PRIMARY"

ivcLine.SOPTYPE = ivcHeader.SOPTYPE

ivcLine.DOCID = ivcHeader.DOCID

ivcLine.DOCDATE = ivcHeader.DOCDATE

ivcLine.SOPNUMBE = ivcHeader.SOPNUMBE

ivcLine.CUSTNMBR = ivcHeader.CUSTNMBR

ivcLine.ITEMNMBR = txtItemNumber.Text

ivcLine.QUANTITY = Convert.ToDecimal(txtQuantity.Text)

8. Populate the line item, SOPTransactionType, and eConnect objects.

//C#

lineItems[0] = ivcLine;

soptrx.taSopHdrIvcInsert = ivcHeader;

soptrx.taSopLineIvcInsert_Items = lineItems;

eConnectType eConnect = new eConnectType();

SOPTransactionType[] sopInvoice = { soptrx };

eConnect.SOPTransactionType = sopInvoice;

'VB .NET

lineItems(0) = ivcLine

soptrx.taSopHdrIvcInsert = ivcHeader

soptrx.taSopLineIvcInsert_Items = lineItems

Dim eConnect As New eConnectType()

Dim sopInvoice As SOPTransactionType() = {soptrx}

eConnect.SOPTransactionType = sopInvoice

9. Serialize the objects to XML.

//C#

FileStream fs = new FileStream("Invoice.xml",
FileMode.Create);

XmlTextWriter writer = new XmlTextWriter(fs, new
UTF8Encoding());

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-54

XmlSerializer serializer = new
XmlSerializer(typeof(eConnectType));

serializer.Serialize(writer, eConnect);

writer.Close();

'VB .NET

Dim fs As New FileStream("Invoice.xml", FileMode.Create)

Dim writer As New XmlTextWriter(fs, New UTF8Encoding())

Dim serializer As New XmlSerializer(GetType(eConnectType))

serializer.Serialize(writer, eConnect)

writer.Close()

10. In the click event of the Submit button, create XmlDocument and

eConnectMethods objects, set your connection string and create a
Boolean variable for the status of the eConnect call.

//C#

XmlDocument xmlDoc = new XmlDocument();

string connString = @"data source = London; initial catalog
= TWO; Integrated Security=SSPI; Persist security
info=False; packet size = 4096";

eConnectMethods eConCall = new eConnectMethods();

bool status;

'VB .NET

Dim xmlDoc As New XmlDocument()

Dim connString As String ="data source = London; initial
catalog = TWO; Integrated Security=SSPI; Persist security
info=False; packet size = 4096"

Dim eConCall As New eConnectMethods()

Dim status As Boolean

11. Use the GetNextSopNumber method to obtain the next SOP

number and then pass that number to the SerializeDoc method as
follows:

//C#

GetSopNumber getSopNumber = new GetSopNumber();

string sopNumber = getSopNumber.GetNextSopNumber(3,
"STDINV", connString);

SerializeDoc(sopNumber);

'VB .NET

Dim getSopNumber As New GetSopNumber()

Dim sopNumber As String = getSopNumber.GetNextSopNumber(3,
"STDINV", connString)

SerializeDoc(sopNumber)

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-55

12. Load the resulting document into the XmlDocument object and then

call the eConnect_EntryPoint method to create the Sales Invoice in
Microsoft Dynamics GP.

//C#

xmlDoc.Load("Invoice.xml");

status = eConCall.eConnect_EntryPoint(connString,
EnumTypes.ConnectionStringType.SqlClient, xmlDoc.OuterXml,
EnumTypes.SchemaValidationType.None, "");

'VB .NET

xmlDoc.Load("Invoice.xml")

status = eConCall.eConnect_EntryPoint(connString,
EnumTypes.ConnectionStringType.SqlClient, xmlDoc.OuterXml,
EnumTypes.SchemaValidationType.None, "")

Your code for the click event of the Submit button resembles the following:

//C#

private void btnSubmit_Click(object sender, EventArgs e)

{

XmlDocument xmlDoc = new XmlDocument();

string connString = @"data source = sqlserver; initial
catalog = TWO; Integrated Security=SSPI; Persist security
info=False; packet size = 4096";

eConnectMethods eConCall = new eConnectMethods();

bool status;

try

{

GetSopNumber getSopNumber = new GetSopNumber();

string sopNumber = getSopNumber.GetNextSopNumber(3,
"STDINV", connString);

SerializeDoc(sopNumber);

xmlDoc.Load("Invoice.xml");

status = eConCall.eConnect_EntryPoint(connString,
EnumTypes.ConnectionStringType.SqlClient, xmlDoc.OuterXml,
EnumTypes.SchemaValidationType.None, "");

MessageBox.Show("Document Successful");

}

catch (eConnectException ex)

{

MessageBox.Show(ex.Message);

}

catch (Exception ex)

{

MessageBox.Show(ex.Message);

}

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-56

}

'VB .NET

Private Sub btnSubmit_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles btnSubmit.Click

Dim xmlDoc As New XmlDocument()

Dim connString As String ="data source = London; initial
catalog = TWO; Integrated Security=SSPI; Persist security
info=False; packet size = 4096"

Dim eConCall As New eConnectMethods()

Dim status As Boolean

Try

Dim getSopNumber As New GetSopNumber()

Dim sopNumber As String = getSopNumber.GetNextSopNumber(3,
"STDINV", connString)

SerializeDoc(sopNumber)

xmlDoc.Load("Invoice.xml")

status = eConCall.eConnect_EntryPoint(connString,
EnumTypes.ConnectionStringType.SqlClient, xmlDoc.OuterXml,
EnumTypes.SchemaValidationType.None, "")

MessageBox.Show("Document Successful")

Catch ex As eConnectException

MessageBox.Show(ex.Message)

Catch ex As Exception

MessageBox.Show(ex.Message)

End Try

End Sub

13. Build the application by clicking Build and then Build

eConnect_SerilaizeSalesInvoice. Correct any error messages that
are returned.

14. Test the solution. Enter the following information on the form:
– Customer Number = AARONFIT0001
– Item Number = 100XLG
– Quantity = 10

Click Submit to send the data into Microsoft Dynamics GP.

15. In Microsoft Dynamics GP, open the new Sales Invoice. Click
Transactions, point to Sales, and then click Sales Transaction
Entry. Click the lookup and select the newly created Sales Invoice.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 7: eConnect

7-57

Quick Interaction: Lessons Learned
Take a moment and write down three Key Points you have learned from this
chapter:

1.

2.

3.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

7-58

Solutions
Test Your Knowledge

eConnect Architecture Overview

1. What are the eConnect business objects and where do they reside?

MODEL ANSWER - The eConnect business objects reside in the Microsoft

Dynamics GP databases as stored procedures.

eConnect Basics

2. What key must you change in the eConnect_Incoming.exe.config file after
the Incoming Service is installed?

() MicrosoftDynamicsGP.ConnectionString
() BackOffice.ConnectionString
() eConnect.ConnectionString
(•) eConnect.BackOffice.ConnectionString

eConnect .NET Assemblies

3. What method in the Microsoft.Dynamics.GP.eConnect assembly do you use
to integrate data into Microsoft Dynamics GP?

(•) eConnectMethods.eConnect_EntryPoint
() eConnectMethods.eConnect_Requester
() EnumTypes.eConnect_EntryPoint
() EnumTypes.eConnect_Requester

4. You can obtain the next sales document number by using the
GetNextSopNumber method.

(•) True
() False

