
Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-1

CHAPTER 4: EXTEND THE WEB SERVICE
Objectives

The objectives are:

• Explain how to use extensions together with the Web Services for
Microsoft Dynamics GP.

• Describe events that can be extended.
• Create a class library project in which code is executed when the

Web Services for Microsoft Dynamics GP is extended.
• Use event handler sample code.
• Describe how to register events so the web services know when an

extension exists and what code to execute.
• Describe code to retrieve the extension data.

Introduction
There may be situations when you must affect data that does not exist in the
Microsoft Dynamics GP databases or there is no Dynamics GP Web Service web
method that meets your needs. In these scenarios, Web Service Extensions may
provide what is missing. Web Service Extensions broaden the web service and
enable you to attach custom code to the Get, Update, Create, Delete, or Void web
service method calls.

Custom code written as a Web Service Extension is executed in response to a
web service call. Custom code can include update or insert statements to a
Microsoft Dynamics GP database or to a different database. For example, you
can:

• Use a Get method extension to pull data from the database and into
an XML document.

• Create an XML document and pass it into the Create method
extension to push data into a database.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-2

Scenario
You are working for a company that develops Warehouse Management Systems
(WMS). A new customer using Microsoft Dynamics GP needs you to integrate
the WMS system with their Microsoft Dynamics GP installation and synchronize
data between the two systems.

One requirement is to export Inventory Items from Microsoft Dynamics GP to
the WMS system. The customer uses a custom table in Microsoft Dynamics GP
for bar code data. The data is not returned from the custom table when calling the
GetItemByKey or GetItemList methods. Use Web Service Extensions to
retrieve the Item bar code value for each Inventory Item during the export
process so that it can be included in the WMS system.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-3

Web Service Extension Overview
All classes in the Web Services for Microsoft Dynamics GP that inherit from the
BusinessObject base class can be extended. These classes include, but are not
limited to:

• Customers
• Vendors
• Sales documents

Typically, Web Services for Microsoft Dynamics GP objects are extended to
support storing and retrieving additional data that is related to the object.
However, web service objects can also be extended for other purposes, such as
adding additional data validation.

Web Service Extension Architecture

Web Service Extensions extend the Dynamics GP Web Service method calls.
The following are a list of components that are required to extend the Dynamics
GP Web Service:

• Dynamics GP Web Service
• BusinessObjectsFile.config
• Extension Assembly

When a call is made to a Dynamics GP Web Service method, the web service
checks the BusinessObjectsFile.config file to determine whether an associated
event is registered. If the event is registered, the extension assembly documented
in the configuration file is called and relevant code included in the assembly
executes. Think of the BusinessObjectsFile.config file as a set of instructions for
the Dynamics GP Web Service.

You can create the extension assembly as a project of type Class Library in
Microsoft Visual Studio 2005. Any created extension assembly must be copied to
the bin directory of the Web Services for Microsoft Dynamics GP installation
directory. By default, this path is:

C:\Program Files\Microsoft
Dynamics\GPWebServices\WebServices\Bin

Within the same directory is the BusinessObjectsFile.config file. To execute the
code in the extension assembly, add an event handler in the
BusinessObjectsFile.config file so the web service knows what code to run and
where to find it.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-4

In an application calling the Dynamics GP Web Service, use the ExtensionList
collection to extend the web service call. For each business object, this collection
contains the additional data that is included together with the object in the web
service method call. Each extension in the collection has the following
properties:

• ExtensionId - a string that identifies the extension and describes what
type of data the extension contains.

• DocExtension - an XML element that contains the additional data
that is being passed together with the object.

When an application uses a web service object that has been extended, the
application is responsible for processing the XML element for each extension
added to the object. The XML element must be processed to extract the
additional data when the object is retrieved. The application must also create the
properly-formed XML element for each extension when an object is created or
updated.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-5

Web Service Extension Example

The following diagram shows how the web service extension components work
together to extend the Dynamics GP Web Service. This example calls and
extends the GetItemByKey method to retrieve bar code information from the
Manufacturer Item Number field in the IV00115 table.

FIGURE 4.1 WEB SERVICE EXTENSION FOR THE GETITEMBYKEY
METHOD

The entry point into this process is when the GetItemByKey method is called to
retrieve information for item 100XLG. When the call is made, the
BusinessObjectsFile.config file is accessed to determine if there are any
Retrieved events to be processed for the SalesItem object.

The sample configuration file entry at the bottom of the figure displays the event
to process. This information is added to the configuration file to register a new
extension assembly named GP_DEV_TOOLKIT_EXTENSION.dll. Within this
assembly, the method that is executed is named GetItemBarCode and is part of
the ItemExtension class.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-6

The GetItemBarCode method contains an SQL SELECT statement that retrieves
item bar code information from the appropriate Microsoft Dynamics GP
company database. The results of the SELECT statement are subsequently
returned to the calling application together with the data from the GetItemByKey
method.

Basic Steps to Create a Web Service Extension

The following high-level steps summarize how to create a web service extension:

1. Decide what objects to extend and which events to use. Remember
that only objects which inherit from the BusinessObject class can be
extended.

2. Determine the format for the XML element. If the web service
extension includes additional data that is passed together with the
web service object, determine the format for the XML element to
contain this data.

Consumers of the web service must process this XML element.
Therefore, a simple structure is better. The following XML element
is used in an extension for the SalesOrder object. It contains the item
bar code information for the sales item.

<ItemBarcode>
<ITMNMBR>100XLG</ITMNMBR>
<BarCode>19014829191</BarCode>
</ItemBarcode>

3. Create the extension assembly that contains the code for the events

being extended.
4. Register the events in the BusinessObjectsFile.config file so that the

Dynamics GP Web Service processes them.

Web Service Events
The Web Services for Microsoft Dynamics GP make several events available for
web service extensions. An event occurs for each step when an object is
retrieved, created, updated or deleted by using the web service. A web service
extension is notified of each event for which it has been registered.

How Events are Processed

When the Dynamics GP Web Service is called, entries in the
BusinessObjectsFile.config file are read to identify any additional events that
must be processed. As the Dynamics GP Web Service processes requests, it
makes the appropriate calls to the extension assemblies for which events are
registered. The extension assemblies must have static methods with specified
names and correct event signatures so that they can be called by the web service.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-7

When the extension assembly is called, the event handling code in the extension
assembly processes the request. Information about the request, such as the
business object being processed, is available in the arguments passed to the event
handling code.

Depending on the event type, the response from the event handling code can
influence additional processing. For example, if the event handler for the event
ValidateForUpdate encounters a validation error, the code in the event handler
adds the error to the ValidationResult object that is passed back to the Dynamics
GP Web Service. After all ValidateForUpdate events have run, the web service
examines whether any validation errors have been noted. If there are validation
errors, the web service logs the validation exceptions and stops processing.

Event List

Use the event list:

• When planning which events to use for the extension.
• When editing the BusinessObjectsFile.config file to register the

events.

Event Occurs Typical Use EventHandlerType Comments
Retrieved After the object has

been retrieved from
the database, but
before it has been
returned from the
web service.

Retrieve additional
data for a web
service object.

BusinessObjectEvent
Handler

None

DefaultingFor
Create

Before the object has
been saved to the
database.

Apply defaulting
logic for the
extended data.

BusinessObjectEvent
Handler

None

ValidatingForC
reate

After the defaulting
event, but before the
object is saved to the
database.

Apply validation
rules for the
extended data.

BusinessObjectValid
ateEvent Handler

All
validation
events run.
This allows
for all
validation
exceptions to
be logged. If
validation
errors have
been logged,
additional
processing
stops.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-8

Event Occurs Typical Use EventHandlerType Comments
Creating Immediately after the

object is created in
the database.

Save extended data
to the appropriate
tables in the
database.

BusinessObjectEventH
andler

This event is
included in
the database
transaction
that creates
the base
object.

Created After the object has
been created
successfully in the
database.

None BusinessObjectEventH
andler

None

DefaultingFor
Update

Before the object has
been updated in the
database.

Apply defaulting
logic for the
extended data.

BusinessObjectUpdate
Event Handler

Has access to
the original
version of the
core business
object.

ValidatingFor
Update

After the defaulting
event, but before the
object is updated in
the database.

Apply validation
rules for the
extended data.

BusinessObjectValidat
eFor
UpdateEventHandler

Has access to
the earlier
version,
before the
update, of the
core business
object. All
validation
events run.
This allows
for all
validation
exceptions to
be logged. If
validation
errors have
been logged,
additional
processing
stops.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-9

Event Occurs Typical Use EventHandlerType Comments
Updating Immediately after the

object is updated in
the database.

Update extended
data in the
appropriate tables
in the database.

BusinessObjectUpdate
Event Handler

Has access to
the original
version of the
core business
object. This
event is
included in
the database
transaction
that updates
the base
object.

Updated After the object has
been updated
successfully in the
database.

None BusinessObjectUpdate
Event Handler

Has access to
the original
version of the
core business
object.

DefaultingFor
Delete

Before the object has
been deleted from the
database.

None BusinessObjectEventH
andler

None

ValidatingFor
Delete

After the defaulting
event, but before the
object has been
deleted from the
database.

Verifies any
preconditions
required for the
object to be
deleted.

BusinessObjectValidat
eEvent Handler

All
validation
events run.
This allows
for all
validation
exceptions to
be logged. If
validation
errors have
been logged,
additional
processing
stops.

Deleting Immediately after the
object has been
deleted from the
database.

Delete extended
data from the
appropriate tables
in the database.

BusinessObjectEventH
andler

This event is
included in
the database
transaction
that deletes
the base
object.

Deleted After the object has
been deleted
successfully from the
database.

None BusinessObjectEventH
andler

None

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-10

Event Occurs Typical Use EventHandlerType Comments
DefaultingFor
Void

Before the object has
been voided.

None BusinessObjectEventH
andler

None

ValidatingFor
Void

After the defaulting
event, but before the
object has been
voided.

Verifies any
preconditions
required for the
object to be voided.

BusinessObjectValidat
eEvent Handler

All
validation
events run.
This allows
for all
validation
exceptions to
be logged. If
validation
errors have
been logged,
additional
processing
stops.

Voiding Immediately after the
object has been
voided.

Performs any
necessary “void”
actions on the
extended data.

BusinessObjectEventH
andler

None

Voided After the object has
been voided
successfully.

None BusinessObjectEventH
andler

None

Extension Assembly
The extension assembly contains code to process events registered in the
BusinessObjectsFile.config. Ensure that this assembly is created correctly.
Otherwise, the Web Services for Microsoft Dynamics GP cannot call the static
methods in the assembly.

Create an Extension Assembly

Use the following steps as a guideline when creating an extension assembly:

1. In Visual Studio 2005, create a new Class Library project. Click File,
point to New, and then click Project. Select a programming
language and then select the Class Library template.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-11

2. Add references to the following assemblies:
• Microsoft.Dynamics.Common
• Microsoft.Dynamics.Common.Types
• Microsoft.Dynamics.GP.BusinessLogic

 These assemblies are typically found in this location:

C:\Program Files\MicrosoftDynamics\
GPWebServices\WebServices\Bin

3. Add using or Imports statements to provide convenient access to the

classes and methods needed for the extension assembly:
• Microsoft.Dynamics.Common
• Microsoft.Dynamics.GP

NOTE: If you are writing to an SQL database in the extension assembly,
include the System.Data, System.Data.SqlClient, and System.Xml namespaces in
the using or Imports section.

4. In the code for the class library, specify the name for the namespace.

Use a name that indicates who created the web service extension or
what type of extended data is being made available.

5. Add a public class. This new class in the extension assembly
contains the static or Shared methods that respond to web service
events. Make sure that the class is marked public. The following
code is an example of a public class named Item for an extension
assembly that writes to a SQL database:

//C#
using System;
using System.Data;
using System.Data.SqlClient;
using System.Xml;
using Microsoft.Dynamics.Common;
using Microsoft.Dynamics.GP;

namespace GP_DEV_TOOLKIT_EXTENSION
{
public static class Items
{
// Event handler methods are added here
}
}

'VB .NET
Imports System

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-12

Imports System.Data
Imports System.Data.SqlClient
Imports System.Xml
Imports Microsoft.Dynamics.Common
Imports Microsoft.Dynamics.GP

Namespace GP_DEV_TOOLKIT_EXTENSION

Public Class Items
'Event handler methods are added here
End Class
End Namespace

6. Add the event handler methods. These public static or Shared
methods respond to the events from the Dynamics GP Web service.

7. Build and deploy the extension assembly. After the extension
assembly is built, copy it to the bin folder of the Web Services for
Microsoft Dynamics GP installation.

Event Handler Methods

Event handler methods are static or Shared public methods added to the public
class in an extension assembly. In most cases, there is one method for each event
the extension assembly handles.

Event Handler Argument Types

The names used for the static or Shared methods are not critical. The name needs
to describe the action performed by the event handler.

The signature for each method is important; the parameters must match what the
web service is expecting. Each event handler method has the following basic
form:

C#
public static void method_name(object sender, EventArgsType e)

VB .NET
Public Shared Sub method_name(ByVal sender as Object, ByVal e as
EventArgsType)

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-13

For example, the following static event handler method responds to an Updating
event in the Dynamics GP Web Service:

//C#

public static void UpdateItem(object sender,
BusinessObjectUpdateEventArgs e)

{

}

'VB .NET

Public Shared Sub UpdateItems(ByVal sender as object, ByVal
e as BusinessObjectUpdateEventArgs)

End Sub

Instead of method_name, type a meaningful name for the method. Instead of
EventArgsType specify the appropriate type for the event to which the static
method is responding. The table lists event types and event arguments types that
you must use.

Event Type Event Arguments Type
Retrieved BusinessObjectEventArgs

DefaultingForCreate BusinessObjectEventArgs

ValidatingForCreate BusinessObjectValidateEventArgs

Creating BusinessObjectEventArgs

Created BusinessObjectEventArgs

DefaultingForUpdate BusinessObjectUpdateEventArgs

ValidatingForUpdate BusinessObjectValidateForUpdateEventArgs

Updating BusinessObjectUpdateEventArgs

Updated BusinessObjectUpdateEventArgs

DefaultingForDelete BusinessObjectEventArgs

ValidatingForDelete BusinessObjectValidateEventArgs

Deleting BusinessObjectEventArgs

Deleted BusinessObjectEventArgs

DefaultingForVoid BusinessObjectEventArgs

ValidatingForVoid BusinessObjectValidateEventArgs

Voiding BusinessObjectEventArgs

Voided BusinessObjectEventArgs

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-14

Writing Event Handler Methods

The event handler method performs an action, such as retrieving extended data
for an object from the database, in response to the web service event. Event
arguments help the event handler complete its work. The table lists the properties
available with the event arguments.

Property Description
BusinessObject The complete business object for which the web

service event is occurring.

Context The Context object passed with the web service
call. This object contains information that is used
when the event is processed, such as the
OrganizationKey.

OriginalBusinessObject For update events, the complete business object as
it existed before it was updated.

Policy The Policy object passed with the web service call.

ValidationResult For validation events, the collection of validation
warnings and errors. If the event handler
encounters a validation issues, it must add them to
this collection.

Event Handler Samples
Event handler methods must frequently access another SQL database, such as the
Microsoft Dynamics GP database, to complete their actions. Objects available
from the Microsoft.Dynamics.Common assembly are provided to help with this
task. The following event handler examples demonstrate how to perform these
database actions.

The event handler methods must also work with the Extension objects that
contain extended data for business objects. The examples show the techniques
that are required to work with the ExtensionList collection, in addition to the
XML element included with each Extension object.

Event Handler Sample 1

The following example shows how to use the Retrieved event handler method to
retrieve item bar code information associated with a sales item object.

Initially, the event handler obtains the following information:

• The sales item object from the event arguments.
• A connection to the database of the current company.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-15

Then, an SQL statement is executed to retrieve the sales item bar code
information for the sales item from the IV00101EXT table.

Finally, an XML element is created to contain the sales item bar code
information. The XML element is added to an Extension object in the Extensions
collection of the sales order object.

//C#

public static void GetItemBarcode(object sender,
BusinessObjectEventArgs e)

{

string sItemNumber;

string sBarcode;

string sItemBarcode;

XmlDocument doc;

XmlElement itemXML;

XmlElement itemNumberXML;

XmlElement itemBarcodeXML;

XmlText text;

SalesItem item;

if (e.BusinessObject.GetType() == typeof(SalesItem))

{

item = (SalesItem)e.BusinessObject;

//Obtain a connection to the database for the current
//company

Connection connection = Connection.GetInstance();

//Create the SQL command to retrieve item bar code
//information

string selectCommand =“SELECT ITEMNMBR, ITEMBARCODE FROM
IV00101EXT WHERE ITEMNMBR =‘” + item.Key.Id + “’”;

//Execute the SQL command and populate the table.

SqlDataAdapter adapter = new
SqlDataAdapter(selectCommand,(SqlConnection)connection.GetC
onnection (e.Context.OrganizationKey));

DataTable table = new DataTable();

adapter.Fill(table);

if (table.Rows.Count > 0)

{

//Use the data retrieved from the SQL database

sItemNumber = table.Rows[0].ItemArray[0].ToString();

sItemBarcode = table.Rows[0].ItemArray[1].ToString();

//Build and name the Extension object

Extension ItemBarcodeExtension = new Extension();

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-16

ItemBarcodeExtension.ExtensionId =“ItemBarcode”;

//Create the XML extension document

doc = new XmlDocument();

itemXML = doc.CreateElement(“ItemBarcode”);

//Create the XML elements that have the appropriate data.

//Item Number

itemNumberXML = doc.CreateElement(“ItemNumber”);

text = doc.CreateTextNode(sItemNumber);

itemNumberXML.AppendChild(text);

itemXML.AppendChild(itemNumberXML);

//Item Bar Code

itemBarcodeXML = doc.CreateElement(“ItemBarcode”);

text = doc.CreateTextNode(sItemBarcode);

itemBarcodeXML.AppendChild(text);

itemXML.AppendChild(itemBarcodeXML);

//Add the extension to the extension object

ItemBarcodeExtension.DocExtension = itemXML;

e.BusinessObject.Extensions.Add(ItemBarcodeExtension);

}

}

}

'VB .NET

Public Shared Sub GetItemBarcode(ByVal sender as Object,
ByVal e as BusinessObjectEventArgs)

Dim sItemNumber As String

Dim sBarcode As String

Dim sItemBarcode As String

Dim doc As XmlDocument

Dim itemXML As XmlElement

Dim itemNumberXML As XmlElement

Dim itemBarcodeXML As XmlElement

Dim text As XmlText

Dim item As SalesItem

If e.BusinessObject.GetType() is GetType(SalesItem) Then

item = CType(e.BusinessObject, SalesItem)

'Obtain a connection to the database for the

'current company

Dim connection As Microsoft.Dynamics.Common.Connection

connection =
Microsoft.Dynamics.Common.Connection.GetInstance

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-17

'Create the SQL command to retrieve item bar

'code information

Dim selectCommand as String

selectCommand =“SELECT ITEMNMBR, ITEMBARCODE FROM
IV00101EXT WHERE ITEMNMBR =’” + item.Key.Id + “‘”

'Execute the SQL command and populate the table.

Dim adapter as new SqlDataAdapter(selectCommand,
CType(connection.GetConnection (e.Context.OrganizationKey),
SqlConnection))

Dim table as new DataTable()

adapter.Fill(table)

If table.Rows.Count > 0 Then

'Use the data retrieved from the SQL database

sItemNumber = table.Rows(0).ItemArray(0).ToString()

sItemBarcode = table.Rows(0).ItemArray(1).ToString()

'Build and name the Extension object

Dim ItemBarcodeExtension as new Extension()

ItemBarcodeExtension.ExtensionId =“ItemBarcode”

'Create the XML extension document

doc = new XmlDocument()

itemXML = doc.CreateElement(“ItemBarcode”)

'Create the XML elements that have

'the appropriate data.

'Item Number

itemNumberXML = doc.CreateElement(“ItemNumber”)

text = doc.CreateTextNode(sItemNumber)

itemNumberXML.AppendChild(text)

itemXML.AppendChild(itemNumberXML)

'Item Bar Code

itemBarcodeXML = doc.CreateElement(“ItemBarcode”)

text = doc.CreateTextNode(sItemBarcode)

itemBarcodeXML.AppendChild(text)

itemXML.AppendChild(itemBarcodeXML)

'Add the extension to the extension object

ItemBarcodeExtension.DocExtension = itemXML

e.BusinessObject.Extensions.Add(ItemBarcodeExtension)

End If

End If

End Sub

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-18

Event Handler Sample 2

The following example shows how to use the ValidatingForCreate event handler
method to validate the item bar code information that is being added as extended
data for a sales item object. The event handler examines the Extension objects
included with the item. If one of the Extension objects has an ExtensionId value
of “ItemBarcode,” the event handler processes the extension object.

After you extract the XML element from the Extension object, the sales item ID
value included in the extended data is validated. If the value cannot be validated,
validation errors are added to the ValidationResults object passed to the event
handler.

//C#

public static void ValidateCreateItemBarcode(object sender,
BusinessObjectValidateEventArgs e)

{

bool found;

string sItemNumber;

string sItemBarcode;

string selectStatement;

SalesItem item;

Extension ItemBarcodeExtension = new Extension();

if (e.BusinessObject.GetType() == typeof(SalesItem))

{

item = (SalesItem)e.BusinessObject;

//Examine the Extension list

found = false;

foreach (Extension ext in item.Extensions)

{

if (ext.ExtensionId ==“ItemBarcode”)

{

ItemBarcodeExtension = ext;

found = true;

break;

}

}

if (found == true)

{

//Found an extension. Therefore, it should be processed

XmlElement itemNumber;

itemNumber = ItemBarcodeExtension.DocExtension;

XmlNodeList nodeList;

nodeList = itemNumber.ChildNodes;

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-19

//Item Number

sItemNumber = nodeList[0].InnerText.ToString();

//Item Bar Code

sItemBarcode =nodeList[1].InnerText.ToString();

//Get the connection to the database for the current
//Company

Connection connection = Connection.GetInstance();

SqlCommand command = new SqlCommand();

command.Connection =
(SqlConnection)connection.GetConnection(e.Context.Organizat
ionKey);

SqlDataAdapter adapter = new SqlDataAdapter(command);

DataTable table = new DataTable();

//Create an SQL statement to verify the Item Number and
//execute it.

selectStatement =“SELECT ITEMNMBR FROM IV00101 WHERE
ITEMNMBR =‘” + sItemNumber + “’”;

command.CommandText = selectStatement;

adapter.Fill(table);

if (table.Rows.Count >= 1)

{

//Add an exception, because the Item Number was found

ValidationError validationError = new ValidationError();

validationError.Id =“1001”;

validationError.Message =“Invalid Item Number specified in
Item Bar Code Information.”;

validationError.ObjectType = typeof(SalesItem).ToString();

validationError.PropertyNames.Add(“ItemNumber”);

e.ValidationResult.Errors.Add(validationError);

}

}

}

}

'VB .NET

Public Shared Sub ValidateCreateItemBarcode(ByVal sender as
object, ByVal e as BusinessObjectValidateEventArgs)

Dim found As Boolean

Dim sItemNumber As String

Dim sItemBarcode As String

Dim selectStatement As String

Dim item As SalesItem

Dim ItemBarcodeExtension As New Extension()

If e.BusinessObject.GetType() is GetType(SalesItem) Then

item = CType(e.BusinessObject, SalesItem)

'Examine the Extension list

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-20

found = False

Dim ext As New Extension()

For Each ext in item.Extensions

If ext.ExtensionId =“ItemBarcode” Then

ItemBarcodeExtension = ext

found = True

Stop

End If

Next

End If

If found Then

'Found an extension. Therefore, it should be processed

Dim itemNumber as XmlElement

itemNumber = ItemBarcodeExtension.DocExtension

Dim nodeList as XmlNodeList

nodeList = itemNumber.ChildNodes

'Item Number

sItemNumber = nodeList(0).InnerText.ToString()

'Item Bar Code

sItemBarcode =nodeList(1).InnerText.ToString()

'Get the connection to the database for

'the current Company

Dim connection As Microsoft.Dynamics.Common.Connection

connection =
Microsoft.Dynamics.Common.Connection.GetInstance

Dim command as new SqlCommand()

command.Connection =
CType(connection.GetConnection(e.Context.OrganizationKey),
SqlConnection)

Dim adapter as new SqlDataAdapter(command)

Dim table as new DataTable()

'Create an SQL statement to verify the

'Item Number and execute it.

selectStatement =“SELECT ITEMNMBR FROM IV00101 WHERE
ITEMNMBR ='” + sItemNumber + “'”

command.CommandText = selectStatement

adapter.Fill(table)

If table.Rows.Count >= 1 Then

'Add an exception, because the Item Number

'was found

Dim validationError as new ValidationError()

validationError.Id =“1001”

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-21

validationError.Message =“Invalid Item Number specified in
Item Bar Code information.”

validationError.ObjectType = GetType(SalesItem).ToString()

validationError.PropertyNames.Add(“ItemNumber”)

e.ValidationResult.Errors.Add(validationError)

End If

End If

End Sub

Event Handler Sample 3

The following example shows how to use the Creating event handler method to
save the item bar code information for a sales item object. The event handler
examines the Extension objects included with the sales item. If one of the
Extension objects has the ExtensionId value of “ItemBarcode,” the event handler
processes the extension object.

The code extracts the item bar code information from XML element of the
Extension object. After you retrieve a connection to the database of the current
company, an SQL statement executes to save the item bar code information for
the sales item to the IV00101EXT table.

//C#

public static void CreateItemBarcode(object sender,
BusinessObjectEventArgs e)

{

bool found;

int rowsAffected;

string sItemNumber;

string sItemBarcode;

string updateStatement;

string insertStatement;

SalesItem item;

Extension ItemBarcodeExtension = new Extension();

if (e.BusinessObject.GetType() == typeof(SalesItem))

{

item = (SalesItem)e.BusinessObject;

//Look at the Extension list

found = false;

foreach (Extension ext in item.Extensions)

{

if (ext.ExtensionId ==“ItemBarcode”)

{

ItemBarcodeExtension = ext;

found = true;

break;

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-22

}

}

if (found == true)

{

//Found an extension. Therefore, it should be processed

XmlElement itemBarcode;

itemBarcode = ItemBarcodeExtension.DocExtension;

XmlNodeList nodeList;

nodeList = itemBarcode.ChildNodes;

//Item Number

sItemNumber = nodeList[0].InnerText.ToString();

//Item Bar Code

sItemBarcode = nodeList[1].InnerText.ToString();

//Obtain a connection to current company database

Connection connection = Connection.GetInstance();

//Create the SQL statement to update the item bar code
//information

updateStatement =“UPDATE IV00101EXT SET ITEMBARCODE =‘” +
sItemBarcode + “’ WHERE ITEMNMBR = ‘” + item.Key.Id + “’”;

//Create the SQL connection

SqlCommand command = new SqlCommand(updateStatement);

SqlConnection sqlConnection = new
SqlConnection(connection.GetConnectionString(e.Context.Orga
nizationKey));

command.Connection = sqlConnection;

//Open the SQL connection and execute the SQL statement

sqlConnection.Open();

rowsAffected = command.ExecuteNonQuery();

if (rowsAffected == 0)

{

//The row did not exist. Therefore, try creating it.

insertStatement =“INSERT IV00101EXT VALUES (‘” +
sItemNumber + “’, ‘” + sItemBarcode + “’)”;

command.CommandText = insertStatement;

rowsAffected = command.ExecuteNonQuery();

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-23

}

//Close the SQL connection

sqlConnection.Close();

}

}

}

'VB .NET

Public Shared Sub CreateItemBarcode(ByVal sender as object,
ByVal e as BusinessObjectEventArgs)

Dim found As Boolean

Dim rowsAffected As Integer

Dim sItemNumber As String

Dim sItemBarcode As String

Dim updateStatement As String

Dim insertStatement As String

Dim item As SalesItem

Dim ItemBarcodeExtension As New Extension()

If e.BusinessObject.GetType() is GetType(SalesItem) Then

item = CType(e.BusinessObject, SalesItem)

’Look at the Extension list

found = False

Dim ext As New Extension()

For Each ext In item.Extensions

If ext.ExtensionId =“ItemBarcode” Then

ItemBarcodeExtension = ext

found = True

Stop

End If

Next

End If

If found Then

'Found an extension. Therefore, it should be processed

Dim itemBarcode As XmlElement

itemBarcode = ItemBarcodeExtension.DocExtension

Dim nodeList As XmlNodeList

nodeList = itemBarcode.ChildNodes

'Item Number

sItemNumber = nodeList(0).InnerText.ToString();

'Item Bar Code

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-24

sItemBarcode = nodeList(1).InnerText.ToString()

'Obtain a connection to current company database

Dim connection As Microsoft.Dynamics.Common.Connection

connection =
Microsoft.Dynamics.Common.Connection.GetInstance

'Create the SQL statement to update the item

'bar code information

updateStatement =“UPDATE IV00101EXT SET ITEMBARCODE =‘” +
sItemBarcode + “’ WHERE ITEMNMBR = ‘” + item.Key.Id + “’”

'Create the SQL connection

Dim command as new SqlCommand()

command = new SqlCommand(updateStatement)

Dim sqlConnection as new
SqlConnection(connection.GetConnectionString(e.Context.Orga
nizationKey))

command.Connection = sqlConnection

'Open the SQL connection and execute the

'SQL statement

sqlConnection.Open()

rowsAffected = command.ExecuteNonQuery()

If rowsAffected = 0 Then

'The row did not exist. Therefore, try creating it.

insertStatement =“INSERT IV00101EXT VALUES (‘” +
sItemNumber + “’, ‘” + sItemBarcode + “’)”

command.CommandText = insertStatement

rowsAffected = command.ExecuteNonQuery()

End If

'Close the SQL connection

sqlConnection.Close()

End If

End Sub

Event Handler Sample 4

The following example shows how to use the ValidatingForUpdate event handler
method to validate the sales item bar code information that is being updated as
extended data for a sales item object. The event handler examines the Extension
objects included together with the sales item. If an Extension object has the
ExtensionId value “ItemBarcode,” the event handler processes the extension
object.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-25

After you extract the XML element from the Extension object, the sales item ID
value included in the extended data is validated. If the sales item ID value cannot
be validated, validation errors are added to the ValidationResults object that was
passed into the event handler.

//C#
public static void ValidateUpdateItemBarcode(object
sender, BusinessObjectValidateForUpdateEventArgs e)
{
bool found;
string sItemNumber;
string sItemBarcode;
string selectStatement;
SalesItem item;
Extension ItemBarcodeExtension = new Extension();

if (e.BusinessObject.GetType() == typeof(SalesItem))
{
item = (SalesItem)e.BusinessObject;

//Look at the Extension list passed along
found = false;
foreach (Extension ext in item.Extensions)
{
if (ext.ExtensionId ==“ItemBarcode”)
{
ItemBarcodeExtension = ext;
found = true;
break;
}
}
if (found == true)
{
//Found an extension. Therefore, it should be processed
XmlElement itemBarcode;
itemBarcode = ItemBarcodeExtension.DocExtension;
XmlNodeList nodeList;
nodeList = itemBarcode.ChildNodes;

//Item Number
sItemNumber = nodeList[0].InnerText.ToString();

//Item Bar Code
sItemBarcode = nodeList[1].InnerText.ToString();

//Get the connection to the current company database
Connection connection = Connection.GetInstance();
SqlCommand command = new SqlCommand();
command.Connection =
(SqlConnection)connection.GetConnection(e.Context.Organizat
ionKey);
SqlDataAdapter adapter = new SqlDataAdapter(command);
DataTable table = new DataTable();

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-26

//Verify that the Item Number is valid
//The SQL statement to verify the Item Number
selectStatement =“SELECT ITEMNMBR FROM IV00101 WHERE
ITEMNMBR = ‘” + sItemNumber + “’”;
command.CommandText = selectStatement;
adapter.Fill(table);

if (table.Rows.Count < 1)
{
//Add an exception, because Item Number was not found
ValidationError validationError = new ValidationError();
validationError.Id =“1001”;
validationError.Message =“Invalid Item Number specified in
Item Bar Code Information.”;
validationError.ObjectType = typeof(SalesItem).ToString();
validationError.PropertyNames.Add(“ItemNumber”);
e.ValidationResult.Errors.Add(validationError);
}
}
}
}

'VB .NET
Public Shared Sub ValidateUpdateItemBarcode(ByVal sender as
object, ByVal e as
BusinessObjectValidateForUpdateEventArgs)

Dim found As Boolean
Dim sItemNumber As String
Dim sItemBarcode As String
Dim selectStatement As String
Dim item As SalesItem
Dim ItemBarcodeExtension As new Extension()

If e.BusinessObject.GetType() Is GetType(SalesItem) Then
item = CType(e.BusinessObject, SalesItem)

'Look at the Extension list passed along
found = False
Dim ext as new Extension()
For Each ext in item.Extensions
If ext.ExtensionId =“ItemBarcode” Then
ItemBarcodeExtension = ext
found = True
Stop
End If
Next

If found Then
'Found an extension. Therefore, it should be processed
Dim itemBarcode As XmlElement
itemBarcode = ItemBarcodeExtension.DocExtension

Dim nodeList As XmlNodeList
nodeList = itemBarcode.ChildNodes

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-27

'Item Number
sItemNumber = nodeList(0).InnerText.ToString()

'Item Bar Code
sItemBarcode = nodeList(1).InnerText.ToString()

'Get the connection to the current company database
Dim connection As Microsoft.Dynamics.Common.Connection
connection =
Microsoft.Dynamics.Common.Connection.GetInstance
Dim command as new SqlCommand()
command.Connection =
CType(connection.GetConnection(e.Context.OrganizationKey),
SqlConnection)

Dim adapter as new SqlDataAdapter(command)
Dim table as new DataTable()

'Verify that the Item Number is valid
'The SQL statement to verify the Item Number
selectStatement =“SELECT ITEMNMBR FROM IV00101 WHERE
ITEMNMBR = ‘” + sItemNumber + “’”

command.CommandText = selectStatement
adapter.Fill(table)

If table.Rows.Count < 1 Then
'Add an exception, because Item Number was not found
Dim validationError as new ValidationError()
validationError.Id =“1001”
validationError.Message =“Invalid Item Number specified in
Item Bar Code Information.”
validationError.ObjectType =GetType(SalesItem).ToString()
validationError.PropertyNames.Add(“ItemNumber”)

e.ValidationResult.Errors.Add(validationError)
End If
End If
End If
End Sub

Event Handler Sample 5

The following example shows how to use the Updating event handler method to
save new sales item bar code information for a sales item object. The event
handler examines the Extension object included together with the sales item. If
one of the Extension objects has the ExtensionId value “ItemBarcode,” the event
handler processes the extension object.

The code extracts the item bar code information from the XML element of the
Extension object. After you retrieve a connection to the database of the current
company, an SQL statement executes and saves the updated sales item bar code
information for the sales item to the IV00101EXT table.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-28

//C#
public static void UpdateItemBarcode(object sender,
BusinessObjectUpdateEventArgs e)
{
bool found;
int rowsAffected;
string sItemNumber;
string sItemBarcode;
string updateStatement;
string insertStatement;
SalesItem item;
Extension ItemBarcodeExtension = new Extension();

if (e.BusinessObject.GetType() == typeof(SalesItem))
{
item = (SalesItem)e.BusinessObject;

//Look at the Extension list passed along
found = false;
foreach (Extension ext in item.Extensions)
{
if (ext.ExtensionId ==“ItemBarcode”)
{
ItemBarcodeExtension = ext;
found = true;
break;
}
}

if (found == true)
{
//Found an extension. Therefore, it should be processed
XmlElement itemBarcode;
itemBarcode = ItemBarcodeExtension.DocExtension;
XmlNodeList nodeList;
nodeList = itemBarcode.ChildNodes;

//Item Number
sItemNumber = nodeList[0].InnerText.ToString();

//Item Bar Code
sItemBarcode = nodeList[1].InnerText.ToString();

//Get the connection to the database for the current
//company
Connection connection = Connection.GetInstance();

//The SQL statement to update item bar code information
updateStatement =“UPDATE IV00101EXT SET ITEMBARCODE ‘” +
sItemBarcode + “’ WHERE ITEMNMBR = ‘” + item.Key.Id + “’”;

//Create the SQL connection
SqlCommand command = new SqlCommand(updateStatement);
SqlConnection sqlConnection = new

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-29

SqlConnection(connection.GetConnectionString(e.Context.Orga
nizationKey));
command.Connection = sqlConnection;

//Open the SQL connection
sqlConnection.Open();

//Execute the SQL statement
rowsAffected = command.ExecuteNonQuery();

if (rowsAffected == 0)
{

//The row did not exist. Therefore, try creating it.
insertStatement =“INSERT IV00101EXT VALUES (‘” +
sItemNumber + “’, ‘” + sItemBarcode + “’)”;
command.CommandText = insertStatement;
rowsAffected = command.ExecuteNonQuery();
}

//Close the SQL connection
sqlConnection.Close();
}
}
}

'VB .NET
Public Shared Sub UpdateItemBarcode(ByVal sender as object,
ByVal e as BusinessObjectUpdateEventArgs)

Dim found As Boolean
Dim rowsAffected As Integer
Dim sItemNumber As String
Dim sItemBarcode As String
Dim updateStatement As String
Dim insertStatement As String
Dim item As SalesItem
Dim ItemBarcodeExtension As New Extension()

If e.BusinessObject.GetType() is GetType(SalesItem) Then
item = CType(e.BusinessObject, SalesItem)

'Look at the Extension list passed along
found = False

Dim ext As New Extension()

For Each ext In item.Extensions
If ext.ExtensionId =“ItemBarcode” Then
ItemBarcodeExtension = ext
found = True
Stop
End If
Next

If found Then
'Found an extension. Therefore, it should be processed.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-30

Dim itemBarcode as XmlElement
itemBarcode = ItemBarcodeExtension.DocExtension

Dim nodeList as XmlNodeList
nodeList = itemBarcode.ChildNodes

'Item Number
sItemNumber = nodeList(0).InnerText.ToString()

'Item Bar Code
sItemBarcode = nodeList(1).InnerText.ToString()

'Get the connection to the database for the current company
Dim connection As Microsoft.Dynamics.Common.Connection
connection =
Microsoft.Dynamics.Common.Connection.GetInstance

'The SQL statement to update item bar code information.
updateStatement =“UPDATE IV00101EXT SET ITEMBARCODE ‘” +
sItemBarcode + “’ WHERE ITEMNMBR = ‘” + item.Key.Id + “’”

'Create the SQL connection
Dim command as new SqlCommand(updateStatement)
Dim sqlConnection as new
SqlConnection(connection.GetConnectionString(e.Context.Orga
nizationKey))
command.Connection = sqlConnection

'Open the SQL connection
sqlConnection.Open()

'Execute the SQL statement
rowsAffected = command.ExecuteNonQuery()
If rowsAffected = 0 Then
'The row did not exist. Therefore, try creating it.
insertStatement =“INSERT IV00101EXT VALUES(‘” + sItemNumber
+ “’, ‘” + sItemBarcode + “’)”
command.CommandText = insertStatement
rowsAffected = command.ExecuteNonQuery()
End If

'Close the SQL connection
sqlConnection.Close()
End If
End If
End Sub

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-31

Event Handler Sample 6

The following example shows how to use the Deleting event handler method to
delete item bar code information for a sales item object. The event handler
examines the sales item object to retrieve the sales item ID value. After you
retrieve a connection to the database of the current company, the event handler
executes an SQL statement to delete the item bar code information for the sales
item from the IV00101EXT table.

//C#
public static void DeleteItemBarcode(object sender,
BusinessObjectEventArgs e)
{
string deleteStatement;
SalesItem item;

if (e.BusinessObject.GetType() == typeof(SalesItem))
{
item = (SalesItem)e.BusinessObject;

//Get the connection to the database for the current
//company
Connection connection = Connection.GetInstance();

//The SQL statement to delete item bar code information
deleteStatement ="DELETE FROM IV00101EXT WHERE ITEMNMBR =
'" + item.Key.Id + "'";

//Create the SQL connection
SqlCommand command = new SqlCommand(deleteStatement);
SqlConnection sqlConnection = new
SqlConnection(connection.GetConnectionString(e.Context.Orga
nizationKey));
command.Connection = sqlConnection;

//Open the SQL connection
sqlConnection.Open();

//Execute the SQL statement
command.ExecuteNonQuery();

//Close the SQL connection
sqlConnection.Close();
}
}

'VB .NET
Public Shared Sub DeleteItemBarcode(ByVal sender as object,
ByVal e as BusinessObjectEventArgs)

Dim deleteStatement As String
Dim item As SalesItem

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-32

if e.BusinessObject.GetType() Is GetType(SalesItem) Then
item = CType(e.BusinessObject, SalesItem)

'Get the connection to the database for the current
'company.
Dim connection As Microsoft.Dynamics.Common.Connection
connection =
Microsoft.Dynamics.Common.Connection.GetInstance

'The SQL statement to delete item
'bar code information
deleteStatement ="DELETE FROM IV00101EXT WHERE ITEMNMBR =
'" + item.Key.Id + "'"

'Create the SQL connection
Dim command as new SqlCommand(deleteStatement)
Dim sqlConnection as new
SqlConnection(connection.GetConnectionString(e.Context.Orga
nizationKey))
command.Connection = sqlConnection

'Open the SQL connection
sqlConnection.Open()

'Execute the SQL statement
command.ExecuteNonQuery()

'Close the SQL connection
sqlConnection.Close()

End If
End Sub

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-33

Register Events
You must register an assembly for the code to be invoked in response to Web
Services for Microsoft Dynamics GP events.

Business Objects Configuration File

As mentioned previously, the BusinessObjectsFile.config file contains
registrations for all the additional events run by the Web Services for Microsoft
Dynamics GP. The BusinessObjectsFile.config file is in XML format and is
located in the Web Services for Microsoft Dynamics GP installation bin folder,
typically found in the following location:

C:\Program Files\Microsoft
Dynamics\GPWebServices\WebServices\Bin

There are several standard elements that make up the XML nodes in the
BusinessObjectsFile.config file, DictionaryEntry Elements and Event Elements.

DictionaryEntry Elements

The BusinessObjectsFile.config contains one <DictionaryEntry> element for
each web service object that can have events registered. Remember that the web
service objects that can raise events are those that inherit from BusinessObject.
For convenience, the entries are in alphabetical order.

Not all objects have <DictionaryEntry> entries in this configuration file. To
register events for an object that is not in the file, add a <DictionaryEntry>
element. The easiest way to do this is to copy and modify an existing element.

The <Key> element for the <DictionaryEntry> element is the complete name of
the business object. The complete name has the prefix Microsoft.Dynamics.GP
followed by the name of the object. The name of the object corresponds to the
class name that appears in the Dynamics GP Web Service Reference. For
example, the complete name for the customer object is
Microsoft.Dynamics.GP.Customer.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-34

Event Elements

A <DictionaryEntry> element can have one or more <Event> elements, each
describing an event for the business object. Each <Event> element consists of the
following items:

Name Description
EventName Name of the event being registered.

EventHandlerType Type of event handler needed for the event.

SoftwareVendor Identifies who added the event.

Type Qualified name that indicates the namespace and static
class that contains the event handler method for the
event.

StaticMethod Name of the static method that will be run for the event.
The signature for this static method must be appropriate
for the type of event.

Assembly Name of the extension assembly that contains the static
method for the event.

Execute A Boolean value that enables an event to be turned on or
off. The value must be set to true for an event to be
processed.

Modify the Configuration File

Make a backup copy of the BusinessObjectsFile.config file before making any
changes. Also, be aware of the following situations when modifying the
configuration file:

• Restart after you make changes
• Configuration errors
• Other existing modifications
• Web service repair options

Restart After You Make Changes

The BusinessObjectsFile.config is read when the Dynamics GP Web Service
starts. If you change this file when the web service is running, the changes are
not honored until the web service is restarted. An easy way to do this is by
restarting Internet Information Services (IIS). To restart IIS, click Start, click
Run, and then type iisreset.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-35

Configuration Errors

Any errors in the configuration file, such as invalid class or method names, can
cause system exceptions that prevent the Web Services for Microsoft Dynamics
GP from running. When a web service method processes, system exceptions are
logged describing the problem. Use the Dynamics GP Web Services Exceptions
Management console to view the logged exceptions.

Other Modifications

Be aware that other modifications may have been made by other developers who
are extending the Web Services for Microsoft Dynamics GP. The file may not be
in its default state. Any automation used to modify this file must consider this
risk.

Web Service Repair Operations

When the Web Services for Microsoft Dynamics GP is repaired, the
BusinessObjectsFile.config is restored to its original state. Any changes that are
made to it are lost. If you are making extensive changes to the file, create a
backup when the changes are completed.

Event Registration Example

The following example shows the entries made in the BusinessObjectsFile.config
file to register events for the extension assembly that manages item bar code
information for the sales item object.

The extension assembly in this example has the name “ExtensionExample”. The
event handler static methods are located in the class named “ItemBarcode”. This
is in the namespace “ExtensionExample.” Each event specifies the appropriate
event handler type for that event.

<DictionaryEntry>
<Key
xsi:type=“xsd:string”>Microsoft.Dynamics.GP.SalesItem</Key>
<Value xsi:type=“BusinessObjectConfiguration”>
<Event>
<EventName>Retrieved</EventName>
<EventHandlerType>
<Type>Microsoft.Dynamics.Common.BusinessObjectEventHandler<
/Type>
<Assembly>Microsoft.Dynamics.Common</Assembly>
</EventHandlerType>
<EventHandler>
<SoftwareVendor>MicrosoftDynamicsGPToolKitDocumentation</So
ftwareVendor>
<Type>ExtensionExample.ItemBarcode</Type>
<StaticMethod>GetItemBarcode</StaticMethod>
<Assembly>ExtensionExample</Assembly>
<Execute>true</Execute>
</EventHandler>
</Event>

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-36

<Event>
<EventName>ValidatingForUpdate</EventName>
<EventHandlerType>
<Type>Microsoft.Dynamics.Common.BusinessObjectValidateForUp
dateEventHandler</Type>
<Assembly>Microsoft.Dynamics.Common</Assembly>
</EventHandlerType>
<EventHandler>
<SoftwareVendor>MicrosoftDynamicsGPToolKitDocumentation</So
ftwareVendor>
<Type>ExtensionExample.ItemBarcode</Type>
<StaticMethod>ValidateUpdateItemBarcode</StaticMethod>
<Assembly>ExtensionExample</Assembly>
<Execute>true</Execute>
</EventHandler>
</Event>
<Event>
<EventName>Updating</EventName>
<EventHandlerType>
<Type>Microsoft.Dynamics.Common.BusinessObjectUpdateEventHa
ndler</Type>
<Assembly>Microsoft.Dynamics.Common</Assembly>
</EventHandlerType>
<EventHandler>
<SoftwareVendor>MicrosoftDynamicsGPToolKitDocumentation</So
ftwareVendor>
<Type>ExtensionExample.ItemBarcode</Type>
<StaticMethod>UpdateItemBarcode</StaticMethod>
<Assembly>ExtensionExample</Assembly>
<Execute>true</Execute>
</EventHandler>
</Event>
<Event>
<EventName>ValidatingForCreate</EventName>
<EventHandlerType>
<Type>Microsoft.Dynamics.Common.BusinessObjectValidateEvent
Handler</Type>
<Assembly>Microsoft.Dynamics.Common</Assembly>
</EventHandlerType>
<EventHandler>
<SoftwareVendor>MicrosoftDynamicsGPToolKitDocumentation</So
ftwareVendor>
<Type>ExtensionExample.ItemBarcode</Type>
<StaticMethod>ValidateCreateItemBarcode</StaticMethod>
<Assembly>ExtensionExample</Assembly>
<Execute>true</Execute>
</EventHandler>
</Event>
<Event>
<EventName>Creating</EventName>
<EventHandlerType>
<Type>Microsoft.Dynamics.Common.BusinessObjectEventHandler<
/Type>
<Assembly>Microsoft.Dynamics.Common</Assembly>
</EventHandlerType>

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-37

<EventHandler>
<SoftwareVendor>MicrosoftDynamicsGPToolKitDocumentation</So
ftwareVendor>
<Type>ExtensionExample.ItemBarcode</Type>
<StaticMethod>CreateItemBarcode</StaticMethod>
<Assembly>ExtensionExample</Assembly>
<Execute>true</Execute>
</EventHandler>
</Event>
<Event>
<EventName>Deleting</EventName>
<EventHandlerType>
<Type>Microsoft.Dynamics.Common.BusinessObjectEventHandler<
/Type>
<Assembly>Microsoft.Dynamics.Common</Assembly>
</EventHandlerType>
<EventHandler>
<SoftwareVendor>MicrosoftDynamicsGPToolKitDocumentation</So
ftwareVendor>
<Type>ExtensionExample.ItemBarcode</Type>
<StaticMethod>DeleteItemBarcode</StaticMethod>
<Assembly>ExtensionExample</Assembly>
<Execute>true</Execute>
</EventHandler>
</Event>
</Value>
</DictionaryEntry>

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-38

Use Web Service Extensions
Applications that access objects by using the Web Services for Microsoft
Dynamics GP must work with the additional data included in the ExtensionList
collection for each object. The information presented here provides examples that
demonstrate how to do this.

Retrieve Extension Data

When an application retrieves an object by using the web service, it must
examine the ExtensionList collection to find whether any additional data is
available in the Extension objects that are contained in the collection. The
application must examine the ExtensionId parameter of each Extension object to
identify what data is included in the extension.

Consider the previous example in which the SalesItem object is extended to
include item bar code information. An Extension object that has the ExtensionId
value “ItemBarcode” is included with the sales item object when the object is
retrieved. The application retrieving the sales item object must examine the
ExtensionList collection for this additional data.

As soon as the Extension object is found, use the DocExtension property to
retrieve the XML element that contains the additional data. In this example, the
item bar code XML element has the following format:

<ItemBarcode>
<ITMNMBR>100XLG</ITMNMBR>
<BarCode>19014829191</BarCode>
</ItemBarcode>

NOTE: It is the responsibility of the developer who extended the web service to
provide information about the format of the XML element that contains the
extended data.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-39

The following example demonstrates how to retrieve the item bar code
information included with the SalesItem object in the ExtensionList collection.
Notice that the ExtensionList collection is examined to determine whether the
item bar code information is present. The XML element that contains the item
bar code data is processed to retrieve the individual items.

//C#
CompanyKey companyKey;
Context context;
Item item;
ItemKey itemKey;
string sItemNumber;
string sItemBarcode;

//Create an instance of the Web service and use default
//credentials
DynamicsGP wsDynamicsGP = new DynamicsGP();
wsDynamicsGP.UseDefaultCredentials = true;

//Create a context object and specify the company
context = new Context();
companyKey = new CompanyKey();
companyKey.Id = (-1);
context.OrganizationKey = (OrganizationKey)companyKey;
context.CultureName =“en-US”;

//Create an item key
itemKey = new ItemKey();
itemKey.Id =“100XLG”;

//Retrieve the item object
item = wsDynamicsGP.GetItemByKey(itemKey, context);

//Look for the item bar code extension
foreach (Extension ext in item.Extensions)
{
if (ext.ExtensionId ==“ItemBarcode”)
{
XmlElement itemBarcode;
itemBarcode = item.Extensions[0].DocExtension;
XmlNodeList nodeList;
nodeList = itemBarcode.ChildNodes;

//Item Number
sItemNumber = nodeList[0].InnerText.ToString();

//Item Bar Code
sItemBarcode= nodeList[1].InnerText.ToString();
}
}

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-40

'VB .NET
Dim companyKey As CompanyKey
Dim context As Context
Dim item As Item
Dim itemKey As ItemKey
Dim sItemNumber As String
Dim sItemBarcode As String

'Create an instance of the Web service
Dim wsDynamicsGP As New DynamicsGP()

'Use default credentials
wsDynamicsGP.UseDefaultCredentials = True

'Create a context object and specify the company
context = new Context()
companyKey = new CompanyKey()
companyKey.Id = (-1)

'Set up the context object
context.OrganizationKey = CType(companyKey,
OrganizationKey)
context.CultureName =“en-US”

'Create an item key
itemKey = New ItemKey()
itemKey.Id =“100XLG”

'Retrieve the item object
item = wsDynamicsGP.GetItemByKey(itemKey, context)

'Look for the item bar code extension
Dim ext As Extension
For Each ext In item.Extensions
If ext.ExtensionId =“ItemBarcode” Then
Dim itemBarcode As XmlElement
itemBarcode = item.Extensions(0).DocExtension
Dim nodeList As XmlNodeList
nodeList = itemBarcode.ChildNodes

'Item Number
sItemNumber = nodeList(0).InnerText.ToString()

'Item Bar Code
sItemBarcode= nodeList(1).InnerText.ToString()

End If
Next

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-41

Create or Update Extension Data

When an application uses the Web Services for Microsoft Dynamics GP to create
a new object or update an existing object with additional data included in the
ExtensionList collection, it is the responsibility of the developer of the
application to maintain this additional data. When you create new objects, the
application adds the necessary Extension objects to the ExtensionList collection.
When updating objects, the application must make sure that the Extension objects
in the collection contain the correct information.

For example, in the retrieving extension data example, the SalesItem object was
extended to include item bar code information and used an ExtensionId value
“ItemBarcode.” The XML element that contains this information is the same as
in the retrieving extension data example.

The following example demonstrates how to create the item bar code information
to include together with the SalesItem object in the ExtensionList collection. In
this example:

• An XML element is created that contains the item bar code
information.

• A new Extension object is created that has the ExtensionId value set
to “ItemBarcode.”

• The XML element that contains the item bar code data is added as
the DocExtension for the object.

• The new sales item object is saved.

//C#

CompanyKey companyKey;

Context context;

SalesItem item;

ItemKey itemKey;

UofMScheduleKey uomKey;

Policy itemPolicy;

DateTime today;

XmlDocument doc;

XmlElement itemXML;

XmlElement itemNumberXML;

XmlElement itemBarcodeXML;

XmlText text;

//Create an instance of the Web service and set the default
//credentials

DynamicsGP wsDynamicsGP = new DynamicsGP();

wsDynamicsGP.UseDefaultCredentials = true;

//Create a context object and specify the company

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-42

context = new Context();

companyKey = new CompanyKey();

companyKey.Id = (-1);

context.OrganizationKey = (OrganizationKey)companyKey;

context.CultureName =“en-US”;

//Create a new item object

item = new SalesItem();

uomKey = new UofMScheduleKey();

uomKey.Id =“4DPROC”;

//Create an item key

itemKey = new ItemKey();

itemKey.Id =“101XLG”;

item.Key = itemKey;

//Set the properties for the new item

item.Description =“Light Green Phone”;

item.UofMScheduleKey = uomKey;

//Obtain today's date

today = DateTime.Today;

//Retrieve the create policy for the item

itemPolicy =
wsDynamicsGP.GetPolicyByOperation(“CreateSalesItem”,
context);

//Create a new Extension

Extension ext = new Extension();

ext.ExtensionId =“ItemBarcode”;

//Create the XML extension document

doc = new XmlDocument();

itemXML = doc.CreateElement(“ItemBarcode”);

//Item Number

itemNumberXML = doc.CreateElement(“ItemNumber”);

text = doc.CreateTextNode(item.Key.Id);

itemNumberXML.AppendChild(text);

itemXML.AppendChild(itemNumberXML);

//Item Bar Code

itemBarcodeXML = doc.CreateElement(“ItemBarcode”);

text = doc.CreateTextNode(“6729918181”);

itemBarcodeXML.AppendChild(text);

itemXML.AppendChild(itemBarcodeXML);

//Add the extension to the SalesItem object

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-43

ext.DocExtension = itemXML;

Extension[] extensionList = new Extension[1];

extensionList[0] = ext;

item.Extensions = extensionList;

//Create the item

wsDynamicsGP.CreateSalesItem(item, context, itemPolicy);

'VB .NET

Dim companyKey As CompanyKey

Dim context As Context

Dim item As SalesItem

Dim itemKey As ItemKey

Dim uomKey As UofMScheduleKey

Dim itemPolicy As Policy

Dim today As DateTime

Dim doc As XmlDocument

Dim itemXML As XmlElement

Dim itemNumberXML As XmlElement

Dim itemBarcodeXML As XmlElement

Dim text As XmlText

'Create an instance of the Web service

Dim wsDynamicsGP As New DynamicsGP()

'Use the default credentials

wsDynamicsGP.UseDefaultCredentials = True

'Create a context object and specify the company

context = New Context()

companyKey = New CompanyKey()

companyKey.Id = (-1)

'Set the properties on the context object

context.OrganizationKey = CType(companyKey,
OrganizationKey)

context.CultureName =“en-US”

'Create a new item object

item = New SalesItem()

uomKey = New UofMScheduleKey()

uomKey.Id =“4DPROC”

'Create an item key

itemKey = New ItemKey()

itemKey.Id =“101XLG”

item.Key = itemKey

'Set the properties for the new item

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-44

item.Description =“Light Green Phone”

item.UofMScheduleKey = uomKey

'Obtain today’s date

today = DateTime.Today

'Retrieve the create policy for the item

itemPolicy =
wsDynamicsGP.GetPolicyByOperation(“CreateSalesItem”,
context)

'Create a new Extension

Dim ext As New Extension()

ext.ExtensionId =“ItemBarcode”

'Create the XML extension document

doc = new XmlDocument()

itemXML = doc.CreateElement(“ItemBarcode”)

'Item Number

itemNumberXML = doc.CreateElement(“ItemNumber”)

text = doc.CreateTextNode(item.Key.Id)

itemNumberXML.AppendChild(text)

itemXML.AppendChild(itemNumberXML)

'Item Bar Code

itemBarcodeXML = doc.CreateElement(“ItemBarcode”)

text = doc.CreateTextNode(“6729918181”)

itemBarcodeXML.AppendChild(text)

itemXML.AppendChild(itemBarcodeXML)

'Add the extension to the SalesItem object

ext.DocExtension = itemXML

Dim extensionList(1) As Extension

extensionList(0) = ext

item.Extensions = extensionList

'Create the item

wsDynamicsGP.CreateSalesItem(item, context, itemPolicy)

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-45

Lab 4.1 - Create an Extension Assembly Project
Scenario

You are creating an application to use in several customer installations. You
realize that you must extend the GetItemByKey method call made to the Web
Services for Microsoft Dynamics GP. To start the process, create new Class
Library project in Visual Studio 2005.

Challenge Yourself
1. Create a new Class Library Project.
2. Add references to the required Dynamics GP Web Service

assemblies.
3. Build the solution and resolve any error messages.

Need a Little Help?
1. In Visual Studio, create a new Class Library Project.
2. Add references to the following Dynamics GP Web Service

assemblies:

• Microsoft.Dynamics.Common
• Microsoft.Dynamics.Common.Types
• Microsoft.Dynamics.GP.BusinessLogic

3. Add a using statement to the class for the namespaces.
4. Build the solution and resolve any error messages.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-46

Lab 4.2 - Retrieve Item Bin Information When Multiple Bins
are Enabled or Disabled

Scenario

Create an application to retrieve items from Microsoft Dynamics GP. The code
will be used by several different customers in their own unique installations of
Microsoft Dynamics GP. This means that the code must be able to handle the
different settings in Microsoft Dynamics GP that each customer may have. One
of the scenarios you must manage is retrieving item bin information when
Multiple Bins is either enabled or disabled.

For this lab, use the placeholder created in a previous lab to handle the scenario
when Multiple Bins is disabled.

Challenge Yourself
1. Open the Class Library project from the previous lab and create a

new static method that returns no values.
2. Retrieve the current connection from the web service call being

extended.
3. Create an SQL SELECT statement to retrieve the item bin

information from the IV00102 table, and fill a table with the results
returned from the select statement.

4. For each row in the table, write the data to an XML document.
5. Build and deploy the extension assembly.
6. Add code to the placeholder method that was created in a previous

lab to retrieve the extension data.
7. Add an event handler to the BusinessObjectsFile.config file.
8. Test the project and confirm that the correct code runs when Multiple

Bins is true or false and that the item information has been retrieved.

Need a Little Help?
1. Open the Class Library project from the previous lab, and then create

a new static method that returns no values and accepts two
parameters.

2. Create a Dynamics Connection to retrieve the current connection
from the web service call that is being extended.

3. Create string variable for the SQL SELECT statement to retrieve the
item bin information from the IV00102 table.

4. Create an SQL data adapter and pass in the Select Command and the
connection object. Also, create a DataTable and fill the table with the
results returned from the select statement.

5. For each row in the table, write the data to an XML document. Each
row must contain data for item location, bin, and bin quantity.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-47

6. Build the extension assembly, correct any error messages, and then
deploy the extension assembly to the bin directory of your Web
Services for Microsoft Dynamics GP installation.

7. After completing a previous lab, you will have a method in the Items
class that contains a placeholder to add code for when multiple bins
is disabled. Add code to loop through the extensions of the SalesItem
object.

8. If the ExtensionID equals ItemBinQuantity, retrieve the XML data to
obtain the item location, bin, and bin quantity.

9. Add an event handler for the Retrieved event to the
BusinessObjectsFile.config file, and then reset IIS.

10. Test the project and confirm the following:
• The correct code runs when Multiple Bins is true or false.
• You have retrieved item information from Microsoft Dynamics

GP.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-48

Summary
This course discussed how Web Service Extensions can extend the web service
method calls made to the Web Services for Microsoft Dynamics GP. All classes
in the Web Services for Microsoft Dynamics GP that inherit from the
BusinessObject class can be extended through a data extension mechanism and a
collection of events.

The components that are required to extend the Web service are:

• An extension assembly
• BusinessObjectsFile.config file
• Web Services for Microsoft Dynamics GP

When the web service processes the request, it looks to the configuration file to
determine what extension assembly to invoke and static method to call to
perform the specified additional processing.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-49

Test Your Knowledge
Test your knowledge with the following questions.

Introduction

1. Which Web Services for Microsoft Dynamics GP method cannot be
extended?

() GetList
() Get
() Create
() Delete

Web Service Extension Overview

2. What type of Visual Studio project should you use to create an extension
assembly?

() Windows Application
() Console Application
() Class Library
() Windows Service

Web Service Events

3. What file instructs the Dynamics GP Web Service to execute code from
extension assemblies?

() Web.config
() DynamicsGPService.asmx
() Microsoft.Dynamics.Common.dll
() BusinessObjectsFile.Config

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-50

Lab 4.1 - Create an Extension Assembly Project (Solution)
Scenario

You are creating an application to use in several customer installations. You
realize that you must extend the GetItemByKey method call made to the
Dynamics GP Web Service. To start the process, create new Class Library
project in Visual Studio 2005.

Step by Step
1. In Visual Studio, create a new project by clicking File, pointing to

New, and then clicking Project.
2. In the New Project window, expand Visual C# or Visual Basic,

click Windows, and then click the Class Library template.
3. Name the new project GP_DEV_TOOLKIT_EXTENSION.
4. Set the location as C:\NetProjects, and then click OK.
5. Add references to the Dynamics GP Web Service assemblies by

clicking Project, clicking Add Reference, and then selecting the
Browse tab. The assemblies that you need to reference are as
follows:
• Microsoft.Dynamics.Common
• Microsoft.Dynamics.Common.Types
• Microsoft.Dynamics.GP.BusinessLogic

By default, the assemblies are in the following location:

C:\Program Files\Microsoft
Dynamics\GPWebServices\WebServices\Bin

6. Add using or Imports statements to the Class1 class.

a. In Solution Explorer, double-click Class1.
b. Add namespace references to the following classes:

• Microsoft.Dynamics.Common
• Microsoft.Dynamics.GP
• System.Data
• System.Data.SqlClient
• System.Xml

Class1 will contain the following code:

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-51

//C#

using System;

using System.Collections.Generic;

using System.Text;

using Microsoft.Dynamics.Common;

using Microsoft.Dynamics.GP;

using System.Data;

using System.Data.SqlClient;

using System.Xml;

namespace GP_DEV_TOOLKIT_EXTENSION

{

public class Class1

{

}

}

'VB .NET

Imports System

Imports System.Collections.Generic

Imports System.Text

Imports Microsoft.Dynamics.Common

Imports Microsoft.Dynamics.GP

Imports System.Data

Imports System.Data.SqlClient

Imports System.Xml

Namespace GP_DEV_TOOLKIT_EXTENSION_VB

Public Class Class1

End Class

End Namespace

7. Build the solution by clicking Build, clicking Build

GP_DEV_TOOLKIT_EXTENSION, and then resolve any
compiler errors.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-52

Lab 4.2 - Retrieve Item Bin Information When Multiple Bins
are Enabled or Disabled (Solution)

Scenario

Create an application to retrieve items from Microsoft Dynamics GP. The code
will be used by several different customers in their own unique installations of
Microsoft Dynamics GP. This means that the code must be able to handle the
different settings in Microsoft Dynamics GP that each customer may have. One
of the scenarios you must manage is retrieving item bin information when
Multiple Bins is either enabled or disabled.

For this lab, use the placeholder created a previous lab to handle the scenario
when Multiple Bins is disabled.

Step by Step

1. Open the Class Library project named
GP_DEV_TOOLKIT_EXTENSION you created in the previous lab.

2. Create a new static method that returns no values in public class
Class1.

a. Name the method GetItemBinQuantity.
b. Create the method to accept two parameters as follows:

//C#

public static void GetItemBinQuantity(object sender,
BusinessObjectEventArgs e)

{

}

'VB

Public Shared Sub GetItemBinQuantity(ByVal sender As
Object, ByVal e As BusinessObjectEventArgs)

End Sub

3. Declare the following variables within the method:

//C#

string sLocationCode;

string sBin;

string sQtyOnHand;

XmlDocument doc;

XmlElement ItemXML;

XmlElement LocXML;

XmlElement BinXML;

XmlElement QtyOnHandXML;

XmlText text;

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-53

SalesItem item = new SalesItem();

'VB .NET

Dim sLocationCode As String

Dim sBin As String

Dim sQtyOnHand As String

Dim doc As XmlDocument

Dim ItemXML As XmlElement

Dim LocXML As XmlElement

Dim BinXML As XmlElement

Dim QtyOnHandXML As XmlElement

Dim Text As XmlText

Dim Item As New SalesItem()

4. Create a Dynamics Connection that will be used to retrieve the current
connection from the web service call being extended.

//C#

Microsoft.Dynamics.Common.Connection connection;

'VB .NET

Dim connection As Microsoft.Dynamics.Common.Connection

5. Determine whether the object type is a SalesItem. If it is, set the item
object declared previously equal to the business object making the call.

//C#

if(e.BusinessObject.GetType() == typeof(SalesItem))

{

item = (SalesItem)e.BusinessObject;

}

'VB .NET

If e.BusinessObject.GetType() Is GetType(SalesItem)

item = CType(e.BusinessObject, SalesItem)

End If

6. In the if block of code, set the connection object equal to the
connection to the database for the current company.

//C#

//Get the connection to the database for the current
//company

connection = Connection.GetInstance();

'VB .NET

'Get the connection to the database for the current company

connection =
Microsoft.Dynamics.Common.Connection.GetInstance

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-54

7. Create string variable for the SQL SELECT statement to retrieve the
item bin information.

//C#

//The SQL command to retrieve item bin information

string selectCommand = @"SELECT LOCNCODE, BINNMBR, QTYONHND
FROM IV00102 WHERE ITEMNMBR ='" + item.Key.Id + "'";

'VB .NET

'The SQL command to retrieve item bin information

Dim selectCommand As String

selectCommand = "SELECT LOCNCODE, BINNMBR, QTYONHND FROM
IV00102 WHERE ITEMNMBR ='" + item.Key.Id + "'"

8. Create an SQL data adapter and pass in the selectCommand and the
connection object. Also, create a DataTable and fill the table with the
results returned from the select statement.

//C#

SqlDataAdapter adapter = new SqlDataAdapter(selectCommand,
(SqlConnection)connection.GetConnection(e.Context.Organizat
ionKey));

DataTable table = new DataTable();

adapter.Fill(table);

'VB .NET

Dim adapter As New SqlDataAdapter(selectCommand,
CType(connection.GetConnection(e.Context.OrganizationKey),
SqlConnection))

Dim table As New DataTable()

adapter.Fill(table)

9. For each row in the table, write the data to an XML document. Each
row will contain data for item location, bin, and bin quantity.

//C#

foreach (DataRow r in table.Rows)

{

//Get the data from the SQL result

sLocationCode = r.ItemArray[0].ToString();

sBin = r.ItemArray[1].ToString();

sQtyOnHand = r.ItemArray[2].ToString();

//Build the Extension object

Extension ItemBinQuantity = new Extension();

ItemBinQuantity.ExtensionId ="ItemBinQuantity";

//Create the XML extension document

doc = new XmlDocument();

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-55

ItemXML = doc.CreateElement("ItemBinQuantity");

//Item Location

LocXML = doc.CreateElement("LOCNCODE");

text = doc.CreateTextNode(sLocationCode);

LocXML.AppendChild(text);

ItemXML.AppendChild(LocXML);

//Item Bin Number

BinXML = doc.CreateElement("BINNMBR");

text = doc.CreateTextNode(sBin);

BinXML.AppendChild(text);

ItemXML.AppendChild(BinXML);

//Item Bin Quantity On Hand

QtyOnHandXML = doc.CreateElement("QTYONHND");

text = doc.CreateTextNode(sQtyOnHand);

QtyOnHandXML.AppendChild(text);

ItemXML.AppendChild(QtyOnHandXML);

//Add the extension to the item extension object

ItemBinQuantity.DocExtension = ItemXML;

e.BusinessObject.Extensions.Add(ItemBinQuantity);

}

'VB .NET

Dim r as DataRow

For Each r in table.Rows

'Get the data from the SQL result

sLocationCode = r.ItemArray(0).ToString()

sBin = r.ItemArray(1).ToString()

sQtyOnHand = r.ItemArray(2).ToString()

'Build the Extension object

Dim ItemBinQuantity As new Extension()

ItemBinQuantity.ExtensionId ="ItemBinQuantity"

'Create the XML extension document

doc = new XmlDocument()

ItemXML = doc.CreateElement("ItemBinQuantity")

'Item Location

LocXML = doc.CreateElement("LOCNCODE")

text = doc.CreateTextNode(sLocationCode)

LocXML.AppendChild(text)

ItemXML.AppendChild(LocXML)

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-56

'Item Bin Number

BinXML = doc.CreateElement("BINNMBR")

text = doc.CreateTextNode(sBin)

BinXML.AppendChild(text)

ItemXML.AppendChild(BinXML)

'Item Bin Quantity On Hand

QtyOnHandXML = doc.CreateElement("QTYONHND")

text = doc.CreateTextNode(sQtyOnHand)

QtyOnHandXML.AppendChild(text)

ItemXML.AppendChild(QtyOnHandXML)

'Add the extension to the item extension object

ItemBinQuantity.DocExtension = ItemXML

e.BusinessObject.Extensions.Add(ItemBinQuantity)

Next

10. Build the extension assembly. Click Build, and then click Build
GP_DEV_TOOLKIT_EXTENSION. Correct any compiler errors that
result.

NOTE: If the class is written in Visual Basic .NET, before building the solution,
in Solution Explorer, right-click GP_DEV_TOOKIT_EXTENSION, click
Properties, and on the Application tab, make sure the Root namespace field is
empty.

11. Copy the GP_DEV_TOOLKIT_EXTENSION.dll file.

Copy the file from the following location:

C:\NetProjects\GP_DEV_TOOLKIT_EXTENSION\Bin\Debug

To the following location:

C:\Program Files\Microsoft Dynamics\
GPWebServices\WebServices\Bin

12. Add code to the GP_DEV_TOOLKIT project to use the extension
data just created. Open the Items class in the GP_DEV_TOOLKIT
project.

13. Add a using or Imports statement for the System.Xml namespace:

//C#

using System.Xml;

'VB .NET

Imports System.Xml

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-57

14. The GetItem method in the Items class has a placeholder to add code
for when Multiple Bins is disabled as follows:

//C#

if (iMultiBins == false)

{

// Placeholder for when Multiple Bins is disabled.

}

'VB .NET

If iMultiBins = False Then

'Placeholder for when Multiple Bins is disabled.

Else

'Additional code is already here

End If

15. Add a foreach statement in this if block of code to loop through the
extensions of the SalesItem object. This checks every extension to
determine whether the Extension ID equals ItemBinQuantity. This is the
ID created in the extension assembly.

//C#

foreach (DynamicsGPService.Extension ext in
item.Extensions)

{

if (ext.ExtensionId =="ItemBinQuantity")

{

}

}

'VB .NET

Dim ext As DynamicsGPService.Extension

For Each ext In item.Extensions

If ext.ExtensionId ="ItemBinQuantity" Then

End If

Next

16. If the ExtensionID does equal ItemBinQuantity, retrieve the XML
data to obtain the item location, bin, and bin quantity. Add the following
code within the if code block that checks the Extension ID:

//C#

XmlElement xmlItem;

xmlItem = ext.DocExtension;

XmlNodeList nodeList;

nodeList = xmlItem.ChildNodes;

//Item Location

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-58

sItemLocation = nodeList[0].InnerText.ToString();

//Item Bin

sBin = nodeList[1].InnerText.ToString();

//If Item location exists, retrieve the item bin quantity.
Only retrieve bin

//quantities when an item location exists.

if (sItemLocation.Trim().Length > 0)

{

//If bin name is empty, set sBin equal to Not Applicable.

if (sBin.Trim().Length <= 0)

{

sBin ="Not Applicable";

}

}

dQTYONHND =
Convert.ToDouble(nodeList[2].InnerText.Trim().ToString());

//Call to a non Dynamics GP database and insert the item
//bin data. We are not going to create this functionality
//for this lab.

'VB .NET

Dim xmlItem as XmlElement

xmlItem = ext.DocExtension

Dim nodeList as XmlNodeList

nodeList = xmlItem.ChildNodes

'Item Location

sItemLocation = nodeList(0).InnerText.ToString()

'Item Bin

sBin = nodeList(1).InnerText.ToString()

'If Item location exists, retrieve the item bin quantity.
'Only retrieve bin quantities when an item location exists.

If sItemLocation.Trim().Length > 0 Then

'If bin name is empty, set sBin equal to Not Applicable.

If sBin.Trim().Length <= 0 Then

sBin ="Not Applicable"

End If

End If

dQTYONHND =
Convert.ToDouble(nodeList(2).InnerText.Trim().ToString())

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-59

'Call to a non Dynamics GP database and insert the item bin
'data. We are not going to create this functionality for
'this lab.

17. Build the solution and resolve any error messages that are returned.
Click Build and then click Build GP_DEV_TOOLKIT.

18. Add an event handler to the BusinessObjectsFile.config file.

a. Open up the BusinessObjectsFile.config file at the following
location:

C:\Program Files\Microsoft
Dynamics\GPWebServices\WebServices\Bin

b. Locate the SalesItem dictionary entry. A
DefaultingForCreate event will exist for this object.
c. Add a new event handler for Retrieved as follows:

<Event>

<EventName>Retrieved</EventName>

<EventHandlerType>

<Type>Microsoft.Dynamics.Common.BusinessObjectEventHandler<
/Type>

<Assembly>Microsoft.Dynamics.Common</Assembly>

</EventHandlerType>

<EventHandler>

<SoftwareVendor>MicrosoftDyanmicsGPDeveloperToolkitTraining
Documentation</SoftwareVendor>

<Type>GP_DEV_TOOLKIT_EXTENSION.Class1</Type>

<StaticMethod>GetItemBinQuantity</StaticMethod>

<Assembly>GP_DEV_TOOLKIT_EXTENSION</Assembly>

<Execute>true</Execute>

</EventHandler>

</Event>

d. The dictionary entry for the SalesItem object is as follows:

<DictionaryEntry>

<Key
xsi:type="xsd:string">Microsoft.Dynamics.GP.SalesItem</Key>

<Value xsi:type="BusinessObjectConfiguration">

<Event>

<EventName>DefaultingForCreate</EventName>

<EventHandlerType>

<Type>Microsoft.Dynamics.Common.BusinessObjectEventHandler<
/Type>

<Assembly>Microsoft.Dynamics.Common</Assembly>

</EventHandlerType>

<EventHandler>

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-60

<SoftwareVendor>Microsoft</SoftwareVendor>

<Type>Microsoft.Dynamics.GP.SalesItemDefaultStrategy</Type>

<StaticMethod>DefaultingForCreate</StaticMethod>

<Assembly>Microsoft.Dynamics.GP.BusinessLogic</Assembly>

<Execute>true</Execute>

</EventHandler>

</Event>

<Event>

<EventName>Retrieved</EventName>

<EventHandlerType>

<Type>Microsoft.Dynamics.Common.BusinessObjectEventHandler<
/Type>

<Assembly>Microsoft.Dynamics.Common</Assembly>

</EventHandlerType>

<EventHandler>

<SoftwareVendor>MicrosoftDyanmicsGPDeveloperToolkitTraining
Documentation</SoftwareVendor>

<Type>GP_DEV_TOOLKIT_EXTENSION.Class1</Type>

<StaticMethod>GetItemBinQuantity</StaticMethod>

<Assembly>GP_DEV_TOOLKIT_EXTENSION</Assembly>

<Execute>true</Execute>

</EventHandler>

</Event>

</Value>

</DictionaryEntry>

19. Reset IIS. Click Start, click Run, type iisreset, and then click OK.

20. To test the project, first modify the GP_DEV_TOOLKIT project. In
the btnGetItem click event, modify the line of code that calls the
GetItem method and pass false instead of true as follows:

//C#

private void btnGetItem_Click(object sender, EventArgs e)

{

Item multiBinItem = new Item();

multiBinItem.GetItem("100XLG", false);

}

'VB .NET

Private Sub btnGetItem_Click(ByVal sender as System.Object,
ByVal e As System.EventArgs) Handles btnGetItem.Click

Dim multiBinItem As New Item()

multiBinItem.GetItem("100XLG", False)

End Sub

21. Set a breakpoint to step the code on the line that calls the GetItem
method as follows:

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-61

//C#

multiBinItem.GetItem("100XLG", false);

'VB .NET

multiBinItem.GetItem("100XLG", False)

22. Build the solution again and resolve any error messages that are
returned. Click Build and then click Build GP_DEV_TOOLKIT.

23. Click Debug, and then click Start Debugging to run the application.

a. On the Windows Application, click GetItem and confirm that
the correct code runs when Multiple Bins is false.
b. Confirm that the variables sBin and dQTYONHND contain
the correct data.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-62

Quick Interaction: Lessons Learned
Take a moment and write down three Key Points you have learned from this
chapter:

1.

2.

3.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 4: Extend the Web Service

4-63

Solutions
Test Your Knowledge

Introduction

1. Which Web Services for Microsoft Dynamics GP method cannot be
extended?

(•) GetList
() Get
() Create
() Delete

Web Service Extension Overview

2. What type of Visual Studio project should you use to create an extension
assembly?

() Windows Application
() Console Application
(•) Class Library
() Windows Service

Web Service Events

3. What file instructs the Dynamics GP Web Service to execute code from
extension assemblies?

() Web.config
() DynamicsGPService.asmx
() Microsoft.Dynamics.Common.dll
(•) BusinessObjectsFile.Config

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

4-64

