
Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 6: Use Web Services and Visual Studio Tools for Office

6-1

CHAPTER 6: USE WEB SERVICES AND VISUAL
STUDIO TOOLS FOR OFFICE
Objectives

The objectives are:

• Demonstrate how to use Visual Studio Tools for Office and Web
Services for Microsoft Dynamics GP to create a solution in
Microsoft Office Excel.

• Provide alternatives to using a DataGrid to display Microsoft
Dynamics GP data in Microsoft Excel.

• Describe the steps to prepare end-user computers to use the solutions
created with the tools.

Introduction
Microsoft Office 2003 offers a platform that provides many possibilities for
application development by using managed code together with the following:

• Microsoft® Word® 2003
• Microsoft® Excel® 2003
• Microsoft® Outlook® 2003

This content focuses on how to use Visual Studio Tools for Office (VSTO)
together with the Web Services for Microsoft Dynamics GP. VSTO provides
another way to access Microsoft Dynamics GP data and display it within
Microsoft Office products such as Excel, Word, and Outlook. You can change
the data in the Microsoft Office product and use the Web Services for Microsoft
Dynamics GP to update the data in Microsoft Dynamics GP.

Scenario
Your company has installed Microsoft Dynamics GP together with the Web
Services for Microsoft Dynamics GP for a new client. Some employees at the
customer site prefer to update sales orders using an Excel spreadsheet, and they
do not want to transition to a new application at this point. To make the
Microsoft Dynamics GP data available in Excel, create an Excel spreadsheet that
retrieves Microsoft Dynamics GP sales order information.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

6-2

Use VSTO with Web Services for Microsoft Dynamics GP
Use the Visual Studio Tools for Office (VSTO) together with the Web Services
for Microsoft Dynamics GP to create a sample project that uses an Excel
spreadsheet to display Microsoft Dynamics GP customer data. You can also add
functionality so that when data in Excel is updated, the Web Services for
Microsoft Dynamics GP also updates the data in Microsoft Dynamics GP.

There are additional VSTO resources available on MSDN. Available topics
provide background information about how Microsoft Visual Studio 2005 Tools
for the Microsoft Office System projects work. These topics include, but are not
limited to, the following:

• Office solutions architecture
• Information about how to install VSTO, how to start to create

solutions, and what has changed since the earlier version
• How to create Word and Excel solutions and the role of assemblies

in a solution
• Detailed information about the VSTO class libraries, user interface,

manifests, and other objects

Prepare an Environment

When preparing a development environment to create solutions with VSTO,
make sure to install the products in the following order:

1. Install Office 2003, including the primary interop assemblies.
2. Install Visual Studio 2005, or the Visual Studio Team System

product that includes the programming language Visual Basic or
Visual C#. By default, Visual Studio Tools for Office is installed
together with the installation of Visual Basic .NET or Visual C#.

3. Install VSTO.

NOTE: If you install the Visual Studio Team System product before you install
Office you must repair the Visual Studio Tools for Office runtime by running
VSTOR.exe.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 6: Use Web Services and Visual Studio Tools for Office

6-3

Create a Project and Add a Web Reference

To create an Excel spreadsheet that displays Microsoft Dynamics GP data by
using the Web Services for Microsoft Dynamics GP, follow these steps:

1. Create a Visual Studio 2005 Office project that is based on the Excel
Workbook template. In Visual Studio, click File, point to New, and
then click Project to open the Project window.

2. Name the project GP_DEV_TOOLKIT_VSTO and change the
location of the project to C:\NetProjects. Click OK when you are
finished.

FIGURE 6.1 NEW PROJECT WINDOW

3. In the Select a Document for Your Application window, select

Create new document, name the document
GP_DEV_TOOLKIT_VSTO, and then click OK. If you receive a
message to enable Visual Basic for Applications, click Yes. After the
new document is created, the project contains an Excel spreadsheet
named GP_DEV_TOOLKIT_VSTO.xls.

4. Add a Web reference to the DynamicsGPService.asmx web service.
a. In Solution Explorer, right-click

GP_DEV_TOOLKIT_VSTO, and then click Add Web
Reference.

b. In the URL field, type the location of the web service.
c. In the Web reference name field, type

DynamicsGPService, and then click Add Reference.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

6-4

Configure the Data Source

When the Web reference is added to the project, a new data source is created. To
view the data source, click Data, and then click Show Data Sources. From the
Data Sources pane, expand DynamicsGPService to see the available objects.

Use the following steps to reference the web service namespace and configure
the data source:

1. Add a using or Imports statement to the application code for the
Dynamics GP Web Service namespace. In Solution Explorer, right-
click Sheet1, and then click View Code. At the top of the Sheet1
class, add one of the following statements:

//C#
using GP_DEV_TOOLKIT_VSTO.DynamicsGPService;

'VB .NET
Imports GP_DEV_TOOLKIT_VSTO.DynamicsGPService

2. In Solution Explorer, double-click Sheet1 to display the Excel

spreadsheet layout. This is where Microsoft Dynamics GP data
appears. The figure shows the Excel spreadsheet layout and some of
the Dynamics GP Web Service objects available in the Data Source
pane.

FIGURE 6.2 EXCEL SPREADSHEET AND MICROSOFT DYNAMICS
GP RESOURCES IN VISUAL STUDIO 2005

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 6: Use Web Services and Visual Studio Tools for Office

6-5

3. Bind the CustomerSummary object to a DataGridView control by
following these steps:

a. In the Data Source pane, click CustomerSummary.
b. Click the drop-down arrow, and then click

DataGridView.

Add a DataGridView to the Sheet

Use the following steps to add the DataGridView to the Excel sheet and populate
it with data from Microsoft Dynamics GP:

1. Drag the CustomerSummary object to the Sheet1 Excel
spreadsheet. This creates a DataGridView within the spreadsheet to
display customer information. A predefined set of columns are added
to the view.

FIGURE 6.3 DATAGRIDVIEW WITH CUSTOMER COLUMNS

2. Populate the DataGridView with data from Microsoft Dynamics GP.

The following code calls the GetCustomerList method in a
ListCustomers method to retrieve a list of customers from the sample
company. The code is added to the Sheet1 class.

At the end of the ListCustomers method, set the DataSource property
of the DataGridView to the CustomerSummary object that is
returned from the GetCustomerList method call.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

6-6

//C#
internal void ListCustomers()
{
CompanyKey companyKey;
Context context;
CustomerCriteria customerCriteria;
CustomerSummary[] customerSummaryList;

//Create an instance of the Web service and set the default
//credentials
DynamicsGP wsDynamicsGP = new DynamicsGP();
wsDynamicsGP.UseDefaultCredentials = true;

//Create a context object and specify the company
context = new Context();
companyKey = new CompanyKey();
companyKey.Id = (-1);
context.OrganizationKey = (OrganizationKey)companyKey;
context.CultureName =“en-US”;

customerCriteria = new CustomerCriteria();

//Retrieve the customer summary information
customerSummaryList =
wsDynamicsGP.GetCustomerList(customerCriteria, context);

//Set the DataSource property
customerSummaryDataGridView.DataSource =
customerSummaryList;
}

'VB .NET
Friend Sub ListCustomers()

Dim companyKey as CompanyKey
Dim context as Context
Dim customerCriteria as CustomerCriteria
Dim customerSummaryList as CustomerSummary()

'Create an instance of the Web service and set the default
'credentials
Dim wsDynamicsGP as new DynamicsGP()
wsDynamicsGP.UseDefaultCredentials = True

'Create a context object and specify the company
context = new Context()
companyKey = new CompanyKey()
companyKey.Id = (-1)
context.OrganizationKey = CType(companyKey,
OrganizationKey)
context.CultureName =“en-US”

customerCriteria = new CustomerCriteria()

'Retrieve the customer summary information
customerSummaryList =
wsDynamicsGP.GetCustomerList(customerCriteria, context)

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 6: Use Web Services and Visual Studio Tools for Office

6-7

'Set the DataSource property
customerSummaryDataGridView.DataSource =
customerSummaryList

End Sub

Populate the Sheet and Test the Application

Call the ListCustomers method from the Sheet1_Startup event and then build and
test the application as follows:

//C#

private void Sheet1_Startup

(object sender, System.EventArgs e)

{

ListCustomers();

}

'VB .NET

Private Sub Sheet1_Startup (ByVal sender As Object, ByVal e
As System.EventArgs) Handles Me.Startup

ListCustomers()

End Sub

1. Build the solution and resolve any compiler error messages. To build

the solution, click Build and then click Build
GP_DEV_TOOLKIT_VSTO.

2. Run the project in debug mode to verify that the Excel spreadsheet is
populated with data. Click Debug and then click Start Debugging.
The DataGridView resembles the figure.

FIGURE 6.4 EXCEL SHEET WITH MICROSOFT DYNAMICS GP DATA

In this demonstration, only view the following information about each customer:

• Name
• IsOnHold
• CreatedDate
• ModifiedDate

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

6-8

Modify the Columns in the DataGridView

Use the following steps to update the Columns collection for the DataGridView
to remove the unwanted columns:

1. In the design view, select the DataGridView and then in the
Properties pane, click the Columns property. Click the ellipsis
button (...) to open the Edit Columns window.

FIGURE 6.5 EDIT COLUMNS WINDOW

2. In the Edit Columns window, remove all columns except for Name,

IsOnHold, CreatedDate, ModifiedDate, and Key. The Key column is
required to update the customer in Microsoft Dynamics GP with
changes that are made to the customer in the spreadsheet.

3. Set the properties for each column according to the following table:

Column Property Value
Name ReadOnly True

IsOnHold ReadOnly False

CreatedDate ReadOnly True

ModifiedDate ReadOnly True

Key Visible False

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 6: Use Web Services and Visual Studio Tools for Office

6-9

4. With the properties set in this manner, the only column that is
editable on the Excel spreadsheet is IsOnHold.
 Run the project in debug mode to verify the column layout in the
Excel spreadsheet.

Respond to IsOnHold Column Value Changes

Use the following steps to respond to IsOnHold column value changes:

1. Create an event handler for the CellContentClick event by double-
clicking a cell. The Sheet1 code behind the page opens and the event
is created.

2. Add code to update the customer in Microsoft Dynamics GP when
the IsOnHold value changes. The values of CustomerKey and
IsOnHold are required to update the customer. The CellContentClick
method provides access to row and column information for the cell
that was clicked. Use e.RowIndex and e.ColumnIndex to determine
the location of the values.

//C#

private void customerSummaryDataGridView_CellContentClick
(object sender, DataGridViewCellEventArgs e)

{

CustomerKey key = new CustomerKey();

Boolean bOnHold =
Convert.ToBoolean(customerSummaryDataGridView.Rows[e.RowInd
ex].Cells[e.ColumnIndex].Value);

key =
(CustomerKey)customerSummaryDataGridView.Rows[e.RowIndex].C
ells[“keyDataGridViewTextBoxColumn”].Value;

UpdateCustomerActiveStatus(key.Id, bOnHold);

}

'VB .NET

Private Sub CustomerSummaryDataGridView_CellContentClick
(ByVal sender As System.Object, ByVal e As
System.Windows.FormsDataGridViewCellEventArgs) Handles
CustomerSummaryDataGridView.CellContentClick

Dim key As New CustomerKey()

Dim bOnHold As Boolean

bOnHold =
Convert.ToBoolean(customerSummaryDataGridView.Rows(e.RowInd
ex).Cells(e.ColumnIndex).Value)

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

6-10

key =
CType(customerSummaryDataGridView.Rows(e.RowIndex).Cells(“k
eyDataGridViewTextBoxColumn”).Value, CustomerKey)

UpdateCustomerActiveStatus(key.Id, bOnHold)

Update the Customer

The UpdateCustomerActiveStatus method accepts the CustomerKey and
IsOnHold values and contains code that calls the Dynamics GP Web Service
UpdateCustomer method.

//C#
internal void UpdateCustomerActiveStatus(string sKey,
Boolean bOnHold)
{
CompanyKey companyKey;
Context context;
Customer customer;
CustomerKey customerKey;
Policy customerPolicy;

//Create an instance of the Web service and use the default
//credentials
DynamicsGP wsDynamicsGP = new DynamicsGP();
wsDynamicsGP.UseDefaultCredentials = true;

//Create a context object and specify the company
context = new Context();
companyKey = new DynamicsGPService.CompanyKey();
companyKey.Id = (-1);
context.OrganizationKey = (OrganizationKey)companyKey;
context.CultureName =“en-US”;

//Create a customer key
customerKey = new CustomerKey();
customerKey.Id = sKey;

//Retrieve the customer object
customer = wsDynamicsGP.GetCustomerByKey(customerKey,
context);

//Set IsOnHold
if (bOnHold == true)
{
bOnHold = false;
}
else
{
bOnHold = true;
}
customer.IsOnHold = bOnHold;

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 6: Use Web Services and Visual Studio Tools for Office

6-11

//Get the update policy for the customer
customerPolicy =
wsDynamicsGP.GetPolicyByOperation(“UpdateCustomer”,
context);

//Update the customer
wsDynamicsGP.UpdateCustomer(customer, context,
customerPolicy);
}

'VB .NET
Friend Sub UpdateCustomerActiveStatus (ByVal sKey As
String, ByVal bOnHold As Boolean)

Dim companyKey As CompanyKey
Dim context As Context
Dim customer As Customer
Dim customerKey As CustomerKey
Dim customerPolicy As Policy

'Create an instance of the Web service and use the default
credentials
Dim wsDynamicsGP As New DynamicsGP()
wsDynamicsGP.UseDefaultCredentials = True

'Create a context object and specify the company
context = New Context()
companyKey = New DynamicsGPService.CompanyKey()
companyKey.Id = (-1)
context.OrganizationKey = CType(companyKey,
OrganizationKey)
context.CultureName =“en-US”

'Create a customer key
customerKey = New CustomerKey()
customerKey.Id = sKey

'Retrieve the customer object
customer = wsDynamicsGP.GetCustomerByKey(customerKey,
context)

'Set IsOnHold
If bOnHold Then
bOnHold = False
Else
bOnHold = True
End If

customer.IsOnHold = bOnHold

'Get the update policy for the customer
customerPolicy =
wsDynamicsGP.GetPolicyByOperation(“UpdateCustomer”,
context)

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

6-12

'Update the customer
wsDynamicsGP.UpdateCustomer(customer, context,
customerPolicy)

End Sub

Use the following steps to test the application again:

1. In Microsoft Dynamics GP, open the Customer record for Aaron Fitz
Electrical. Click Cards, point to Sales, and then click Customer. In
the Customer Maintenance window, click the lookup next to the
Customer ID field and then select AARONFIT0001. Notice that the
Hold check box is clear for this customer.

2. In Visual Studio, run the project in debug mode. After the data is
available on the spreadsheet, select the IsOnHold check box for
Aaron Fitz Electrical. Selecting the check box triggers the

3. CellContentClick event and updates the IsOnHold field value for
Aaron Fitz Electrical.

4. In Microsoft Dynamics GP, open the Customer record for Aaron Fitz
Electrical again and confirm that the Hold check box is selected.

Add Data Source Data to Office Documents
The previous section used a DataGridView to display customer data on an Excel
spreadsheet. There are other ways to display the data obtained by the
DynamicsGPService Data Source.

For each object in the DynamicsGPService Data Source, you have the option of
adding:

• A ListObject
• A DataGridView
• Additional controls such as a NamedRange, TextBox, Bookmark,

Label, and LinkLabel

This content provides additional information about these options.

NOTE: If your project type is a Word document, only the DataGridView option
is available.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 6: Use Web Services and Visual Studio Tools for Office

6-13

ListObject

The ListObject control displays data in a series of rows and columns. To bind an
object to a ListObject, in the Data Source pane, click the object, click the drop-
down arrow, and then click ListObject. When you drag the object from the Data
Source pane to the spreadsheet, the columns are automatically created based on
the properties for the object. Each column has a drop-down menu with sort
options and options to filter the number of results returned. Update existing data
or add new records by using a ListObject.

To display Microsoft Dynamics GP data in the ListObject, set the DataSource
property of the ListObject to a summary list returned from a GetList method call.

DataGridView

As shown in the demonstration, the DataGridView displays the data in a
customizable grid. This control is similar to the ListObject in the following ways:

• The columns are populated based on the selected object.
• Data can be updated.
• To display Microsoft Dynamics GP data in the view, set the

DataSource property of the DataGridView to a summary list
returned from a Get List method call.

Additional Controls

Some attributes on the objects available in the DynamicsGPService Data Source
can be bound to other controls. These controls are:

• NamedRange
• TextBox
• Bookmark
• Label
• LinkLabel

When you select an attribute under an object, the controls available for that
attribute appear.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

6-14

The following table indicates the namespace to which each control belongs.

Namespace Namespace Contents Class
Microsoft.Office.Tools.Word.Controls Contains a set of

Windows Forms
controls that can be
used on a Document
host item. Each of these
classes extends a base
class that is in the
System.Windows.Forms
namespace with
additional functionality
that is specific to Word
documents.

Label
LinkLabel
TextBox

Microsoft.Office.Tools.Excel.Controls Contains a set of
Windows Forms
controls that can be
used on a Worksheet
host item. Each of these
classes extends a base
class that is in the
System.Windows.Forms
namespace with
additional functionality
that is specific to Excel
worksheets.

Label
LinkLabel
TextBox

Microsoft.Office.Tools.Excel Contains a set of classes
that extend and support
the Microsoft Office
Excel object model

NamedRange

Microsoft.Office.Tools.Word Contains a set of classes
that extend and support
the Microsoft Office
Word object model

Bookmark

NamedRange and Bookmark Controls

A NamedRange control is used in Excel and is a range that has a unique name,
exposes events, and can be bound to data. To add the control to a spreadsheet,
follow these steps:

1. In the Data Source pane, click the attribute, click the drop-down
arrow, and then click NamedRange.

2. Drag the attribute onto the spreadsheet to create a NamedRange
control.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 6: Use Web Services and Visual Studio Tools for Office

6-15

You can now reference the cell that contains the NamedRange by the name of the
NamedRange. When a NamedRange is added to the spreadsheet, a binding
source is added to the document. Set the DataSource property of the binding
source to a summary list returned by the web service call.

The Bookmark control is used in Word and is similar to the NamedRange in
Excel:

• The bookmark control has a unique name, exposes events, and can
be bound to data.

• You add a bookmark control to a Word document from the Data
Sources pane.

• You can reference the Bookmark by the name of the Bookmark.

Create a table that contains data retrieved from Microsoft Dynamics GP, and then
add a Bookmark control to the table.

TextBox, Label, and LinkLabel Controls

Typically, a TextBox control is used to display, or accept as input, a single line of
text. Use the Text property of the TextBox control to display a single item of
data retrieved from Microsoft Dynamics GP. Alternatively, use the TextBox
control as an input control to update data in Microsoft Dynamics GP.

Label

Label controls are typically used to provide descriptive text for a control. For
example, use a Label to add descriptive text for a TextBox control to inform the
user about the type of data expected in the control.

LinkLabel

The LinkLabel control is similar to a Label control except that it can display a
hyperlink. Multiple hyperlinks can be specified in the text of the control. For
example, use a hyperlink to display Home Page information for a Customer in
Microsoft Dynamics GP.

Each hyperlink displayed in the LinkLabel control is an instance of the
LinkLabel.Link class. The LinkLabel.Link class defines display information,
state, and location of the hyperlink. In addition, the LinkData property of the
LinkLabel.Link class enables you to associate information, such as a URL to
display, with the hyperlink.

Install Visual Studio Tools for Office Runtime
Each computer to which you deploy solutions developed with Microsoft Visual
Studio Tools for Office must meet specific prerequisites. In addition, you must
configure the security policy to enable the solution to run.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

6-16

The prerequisites include the .NET Framework 2.0, Microsoft Office 2003, and
the Visual Studio Tools for Office runtime. The runtime must be installed on the
computer of each end user and must also be installed on any server where Visual
Studio Tools for Office code runs. You do not have to install the runtime on the
development computer because it is installed automatically when you install
Visual Studio Tools for Office.

NOTE: You must be an administrator on the computer to install the Visual
Studio Tools for Office runtime.

You do not need to install the Microsoft Office applications on the computer of
every end-user. Instead, you can install the Visual Studio Tools for Office
runtime on a server and use the ServerDocument object to access document files.
If you do not want end-users to access Office applications on a server, Microsoft
Office 2003 must be installed on their local computer before installing the Visual
Studio Tools for Office runtime.

Installation Steps

Follow these steps to install the prerequisites and VSTO runtime:

1. Install the .NET Framework 2.0.
2. Install Microsoft Office 2003.
3. Install the VSTO runtime by running VSTOR.exe on the end-user

computers. VSTOR.exe is on the Visual Studio Tools for Office
installation media, and is also available as a redistributable package
from the Microsoft Download
Center(http://www.microsoft.com/downloads).

4. For non-English settings for Windows, install the Visual Studio
Tools for Office Language Pack to view Visual Studio Tools for
Office runtime messages in the same language as Windows. If any
end-users run solutions with non-English settings for Windows, they
must have the language pack to see runtime messages in the same
language as Windows. The Visual Studio Tools for Office Language
Pack is available from the Microsoft Download Center.

5. For Outlook solutions, create the registry keys required to run the
add-in on the client computer.

6. Grant full trust to the assemblies.
7. For Word and Excel solutions, if the Office document is in a network

location, you must also grant full trust to the document.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 6: Use Web Services and Visual Studio Tools for Office

6-17

Lab 6.1 - Create an Office Excel Workbook Project
Scenario

One of your clients wants to display Microsoft Dynamics GP data on an Excel
spreadsheet. Create a Visual Studio 2005 Office project that is based on the Excel
Workbook template.

Challenge Yourself
1. Create a Visual Studio 2005 Office project that is based on the Excel

Workbook template.
2. Add a Web reference to the DynamicsGPService.asmx web service.
3. Build the project and resolve any error messages that are returned.

Need a Little Help?
1. Create a Visual Studio 2005 Office project that is based on the Excel

Workbook template.
2. In the Select a Document for Your Application window, select

Create new document.
3. Add a Web reference, and then a using or Imports statement for the

DynamicsGPService.asmx web service.
4. Build the project. Resolve any error messages that are returned.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

6-18

Lab 6.2 - Update Sales Orders within an Office Excel
Workbook Project

Scenario

Your client wants to update or insert the CustomerPONumber for sales orders on
the Excel spreadsheet created in the previous lab. You must meet the following
requirements:

• Retrieve sales order data by using the Web Services for Microsoft
Dynamics GP.

• Display the Sales Order ID, Customer Name, and
CustomerPONumber.

• The client wants to be able to scroll through orders and update the
CustomerPONumber in Microsoft Dynamics GP from the
spreadsheet.

Challenge Yourself
1. Open the GP_DEV_TOOLKIT_VSTO_UpdateSales Visual Studio

2005 project created in the previous lab.
2. Add the Id of SalesOrderKey, the CustomerName, and the

CustomerPONumber to the spreadsheet.
3. Add buttons to scroll through the records, bind data to the cells, and

to update the sales order data in Microsoft Dynamics GP.
4. Retrieve and bind the sales order information.
5. Modify the spreadsheet and code behind the file to update the

CustomerPONumber on the Sales Order in Microsoft Dynamics GP.
6. Build and test the application.

Need a Little Help?
1. Open the GP_DEV_TOOLKIT_VSTO_UpdateSales Visual Studio

2005 project created in the previous lab.
2. In the Data Sources pane, expand the SalesOrder object to view a

list of properties for the SalesOrder object.
3. Add the SalesOrderKey, CustomerName, and

CustomerPONumber properties to the spreadsheet.
4. Add buttons to scroll through the retrieved records, to bind data to

the cells, and to update the sales order data in Microsoft Dynamics
GP.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 6: Use Web Services and Visual Studio Tools for Office

6-19

5. Add a method to Sheet1 to retrieve sales order information and set
the DataSource property for the salesOrderBindingSource.

6. Add a button to submit the CustomerPONumber changed in the
spreadsheet.

7. Add code to call the UpdateSalesOrder method and pass the
SalesOrder ID and CustomerPONumber from the Excel spreadsheet.

//C#
private void button5_Click(object sender, EventArgs e)
{
UpdateSalesOrder(idNamedRange.Text.ToString(),
customerPONumberNamedRange.Text.ToString());
}

'VB .NET
Private Sub button5_Click(ByVal sender as object, ByVal e
as EventArgs)

UpdateSalesOrder(idNamedRange.Text.ToString(),
customerPONumberNamedRange.Text.ToString())

End Sub

8. Create the method to call the UpdateSalesOrder method. Update

the spreadsheet with any updated CustomerPONumber.
9. Build and test the application. Verify Sales Order data is available

and that you can add or edit the CustomerPONumber.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

6-20

Summary
This content discussed:

• How to use Visual Studio Tools for Office together with the Web
Services for Microsoft Dynamics GP to display and update Microsoft
Dynamics GP Customer data on an Excel spreadsheet.

• Information about other controls that you can use for data binding,
such as ListObject and NamedRange.

• The software that is required on the end-user computers and how to
install the VSTO runtime.

Microsoft Office products provide a familiar interface for users which in some
cases make it easier to work with data. Using VSTO makes it easy to integrate
Microsoft Dynamics GP data with Microsoft Office products.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 6: Use Web Services and Visual Studio Tools for Office

6-21

Test Your Knowledge
Test your knowledge with the following questions.

Introduction

1. Visual Studio Tools for Office integrates with Excel, Word, and Outlook.

() True
() False

Use VSTO with Web Services for Microsoft Dynamics GP

2. The Data Source for the Dynamics GP Web Service is automatically created
when the Web reference to the DynamicsGPService.asmx Web service is
added to the Office project.

() True
() False

Add Data Source Data to Office Documents

3. What should you set the DataSource property of a ListObject to display data
that is returned from a GetList Web service method call?

() DataGridView
() Summary Object
() Key
() Instance of Web Service

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

6-22

Lab 6.1 - Create an Office Excel Workbook Project (Solution)
Scenario

One of your clients wants to display Microsoft Dynamics GP data on an Excel
spreadsheet. Create a Visual Studio 2005 Office project that is based on the Excel
Workbook template.

Step by Step
1. Create a Visual Studio 2005 Office project that is based on the Excel

Workbook template. In Visual Studio, click File, point to New, and
then click Project.

2. In the Project window, name the project
GPDEVTOOLKIT_VSTO_UpdateSales and change the location of
the project to C:\NetProjects. Click OK when you are finished.

3. In the Select a Document for Your Application window, select
Create new document, name the document
GPDEVTOOLKIT_VSTO_UpdateSales, and then click OK.

4. After the new document is created, the project contains an Excel
spreadsheet named GPDEVTOOLKIT_VSTO_UpdateSales.xls.

5. Add a Web reference to the DynamicsGPService.asmx web service.

a. In Solution Explorer, right-click
GPDEVTOOLKIT_VSTO_UpdateSales, and then
click Add Web Reference.

b. In the URL field, type the location of the web service.
c. In the Web reference name field, type

DynamicsGPService, and then click Add Reference.

6. In Solution Explorer, right-click Sheet1, and then click View Code.
At the top of the Sheet1 class, add a using or Imports statement for
the web service namespace.

//C#
using GPDEVTOOLKIT_VSTO_UpdateSales.DynamicsGPService;

'VB .NET
Imports GPDEVTOOLKIT_VSTO_UpdateSales.DynamicsGPService

7. Build the project by clicking Build and then clicking Build

GPDEVTOOLKIT_VSTO_UpdateSales. Resolve any error
messages that are returned.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 6: Use Web Services and Visual Studio Tools for Office

6-23

Lab 6.2 - Update Sales Orders within an Office Excel
Workbook Project (Solution)

Scenario

Your client wants to update or insert the CustomerPONumber for sales orders on
the Excel spreadsheet created in the previous lab. You must meet the following
requirements:

• Retrieve sales order data by using the Web Services for Microsoft
Dynamics GP.

• Display the Sales Order ID, Customer Name, and
CustomerPONumber.

• The client wants to be able to scroll through orders and update the
CustomerPONumber in Microsoft Dynamics GP from the
spreadsheet.

Step by Step
1. Open the GP_DEV_TOOLKIT_VSTO Visual Studio 2005 project

created in the previous lab.
2. Open the Data Source pane. Click Data and then click Show Data

Sources.
3. In the Data Sources pane, expand the SalesOrder object to view a

list of properties for the SalesOrder object.
4. Add the SalesOrderKey property to the

GP_DEV_TOOLKIT_VSTO_UpdateSales spreadsheet. Expand the
Key property, click Id, and then drag it to cell A1. Repeat this
process as follows:

a. Click CustomerName and drag it to cell B1.
b. Click the CustomerPONumber property and drag it to

cell C1.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

6-24

5. Add four buttons to scroll through the retrieved records. Open the
Toolbox and drag the buttons onto the spreadsheet. Align them
horizontally near the third row as shown in the image:

FIGURE 6.6 EXCEL SPREADSHEET

6. Add code for the button events, to bind data to the cells, and to
update the sales order data in Microsoft Dynamics GP. To access the
code view of Sheet1, in Solution Explorer, right-click Sheet1, and
then click View Code.

7. Add a method named ListSalesOrders to Sheet1 to retrieve sales
order information:

//C#

internal void ListSalesOrders()

{

CompanyKey companyKey;

Context context;

LikeRestrictionOfString customerIdRestriction;

ListRestrictionOfNullableOfSalesTransactionState
transactionStateRestriction;

SalesOrderCriteria salesOrderCriteria;

SalesOrderSummary[] salesOrderSummary;

//Create an instance of the Web service

DynamicsGP wsDynamicsGP = new DynamicsGP();

//Set the default credentials

wsDynamicsGP.UseDefaultCredentials = true;

//Create a context object and set the company information

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 6: Use Web Services and Visual Studio Tools for Office

6-25

context = new Context();

companyKey = new CompanyKey();

companyKey.Id = (-1);

context.OrganizationKey = (OrganizationKey)companyKey;

context.CultureName ="en-US";

//Create a transaction state restriction object

//The SaleTransactionState enumeration specifies the
//transaction state

transactionStateRestriction = new
ListRestrictionOfNullableOfSalesTransactionState();

transactionStateRestriction.EqualValue =
SalesTransactionState.Work;

//Create a sales order criteria object

//Retrieve summary objects of active sales orders for the

//specified customer

salesOrderCriteria = new SalesOrderCriteria();

salesOrderCriteria.TransactionState =
transactionStateRestriction;

//Retrieve the sales order summaries specified by the
//criteria object

salesOrderSummary =
wsDynamicsGP.GetSalesOrderList(salesOrderCriteria,
context);

}

'VB .NET

Friend Sub ListSalesOrders()

Dim companyKey As CompanyKey

Dim context As Context

Dim customerIdRestriction As LikeRestrictionOfString

Dim transactionStateRestriction As
ListRestrictionOfNullableOfSalesTransactionState

Dim salesOrderCriteria As SalesOrderCriteria

Dim salesOrderSummary() As SalesOrderSummary

'Create an instance of the Web service

Dim wsDynamicsGP As New DynamicsGP()

'Set the default credentials

wsDynamicsGP.UseDefaultCredentials = True

'Create a context object and set the company information

context = New Context()

companyKey = New CompanyKey()

companyKey.Id = (-1)

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

6-26

context.OrganizationKey = CType(companyKey,
OrganizationKey)

context.CultureName ="en-US"

'Create a transaction state restriction object

'The SaleTransactionState enumeration specifies the
'transaction state

transactionStateRestriction = New
ListRestrictionOfNullableOfSalesTransactionState()

transactionStateRestriction.EqualValue =
SalesTransactionState.Work

'Create a sales order criteria object

'Retrieve summary objects of active sales orders for the

'specified customer

salesOrderCriteria = New SalesOrderCriteria()

salesOrderCriteria.TransactionState =
transactionStateRestriction

'Retrieve the sales order summaries specified by the

'criteria object

salesOrderSummary =
wsDynamicsGP.GetSalesOrderList(salesOrderCriteria, context)

End Sub

8. Set the DataSource for the salesOrderBindingSource after the line of

code that retrieves the sales order summary information. The
salesOrderBindingSource was created when you dragged the
SalesOrder properties to the Excel spreadsheet.

//C#

salesOrderBindingSource.DataSource = salesOrderSummary;

'VB .NET

SalesOrderBindingSource.DataSource = salesOrderSummary

9. In the Sheet1_Startup event, call the ListSalesOrders method to

retrieve sales order data.

//C#

private void Sheet1_Startup(object sender, System.EventArgs
e)

{

ListSalesOrders();

}

'VB .NET

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 6: Use Web Services and Visual Studio Tools for Office

6-27

Private Sub Sheet1_Startup(ByVal sender as Object, ByVal e
As System.EventArgs) Handles Me.Startup

ListSalesOrders()

End Sub

10. In the Sheet1_Startup event, set the text for the four buttons.

//C#

this.button1.Text ="|<";

this.button2.Text ="<";

this.button3.Text =">";

this.button4.Text =">|";

'VB .NET

Me.button1.Text ="|<"

Me.button2.Text ="<"

Me.button3.Text =">"

Me.button4.Text =">|"

11. Add code to the click event of each button:

//C#

private void button1_Click(object sender, System.EventArgs
e)

{

this.salesOrderBindingSource.MoveFirst();

}

private void button2_Click(object sender, System.EventArgs
e)

{

this.salesOrderBindingSource.MovePrevious();

}

private void button3_Click(object sender, System.EventArgs
e)

{

this.salesOrderBindingSource.MoveNext();

}

private void button4_Click(object sender, System.EventArgs
e)

{

this.salesOrderBindingSource.MoveLast();

}

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

6-28

'VB .NET

Private Sub Button1_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button1.Click

Me.SalesOrderBindingSource.MoveFirst()

End Sub

Private Sub Button2_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button2.Click

Me.SalesOrderBindingSource.MovePrevious()

End Sub

Private Sub Button3_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button3.Click

Me.SalesOrderBindingSource.MoveNext()

End Sub

Private Sub Button4_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button4.Click

Me.SalesOrderBindingSource.MoveLast()

End Sub

12. Set the background color for the CustomerPONumber cell to

yellow as shown in the following screenshot:

FIGURE 6.7 SET THE BACKGROUND COLOR

13. Add another button that to use to submit the CustomerPONumber

that is entered in the spreadsheet.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 6: Use Web Services and Visual Studio Tools for Office

6-29

a. Drag the button from the Toolbox and put it to the right
of the CustomerPONumber cell.

b. Set the Text property of the button to Submit.

14. Double-click the Submit button. Add code to call the
UpdateSalesOrder method and pass the SalesOrder ID and
CustomerPONumber from the Excel spreadsheet. The code for the
UpdateSalesOrder method is included in the next step.

//C#

private void button5_Click(object sender, EventArgs e)

{

UpdateSalesOrder(idNamedRange.Text.ToString(),

customerPONumberNamedRange.Text.ToString());

}

'VB .NET

Private Sub Button5_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles Button5.Click

UpdateSalesOrder(idNamedRange.Text.ToString(),customerPONum
berNamedRange.Text.ToString())

End Sub

15. Create a method named UpdateSalesOrder to call the

UpdateSalesOrder method in the Dynamics GP Web Service. Then
call ListSalesOrders to update the spreadsheet with any updated
CustomerPONumber.

//C#

internal void UpdateSalesOrder(string sSalesOrderKey,
string sPONumber)

{

CompanyKey companyKey;

Context context;

SalesDocumentKey salesOrderKey;

SalesOrder salesOrder;

Policy salesOrderUpdatePolicy;

//Create an instance of the Web service

DynamicsGP wsDynamicsGP = new DynamicsGP();

//Set the default credentials

wsDynamicsGP.UseDefaultCredentials = true;

//Create a context object and set company information

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

6-30

context = new Context();

companyKey = new CompanyKey();

companyKey.Id = (-1);

context.OrganizationKey = (OrganizationKey)companyKey;

context.CultureName ="en-US";

//Create a sales document key

salesOrderKey = new SalesDocumentKey();

salesOrderKey.Id = sSalesOrderKey;

//Retrieve the sales order

salesOrder = wsDynamicsGP.GetSalesOrderByKey(salesOrderKey,
context);

//Set the CustomerPONumber property

salesOrder.CustomerPONumber = sPONumber;

//Retrieve the update policy for sales orders

salesOrderUpdatePolicy =
wsDynamicsGP.GetPolicyByOperation("UpdateSalesOrder",
context);

//Update the sales order object

wsDynamicsGP.UpdateSalesOrder(salesOrder, context,
salesOrderUpdatePolicy);

//Call ListSalesOrders to update the data source so the

//new Customer PO Number will display.

ListSalesOrders();

}

'VB .NET

Friend Sub UpdateSalesOrder(ByVal sSalesOrderKey As String,
ByVal sPONumber As String)

Dim companyKey As CompanyKey

Dim context As Context

Dim salesOrderKey As SalesDocumentKey

Dim salesOrder As SalesOrder

Dim salesOrderUpdatePolicy As Policy

'Create an instance of the Web service

Dim wsDynamicsGP As New DynamicsGP()

'Set the default credentials

wsDynamicsGP.UseDefaultCredentials = True

'Create a context object and set company information

context = New Context()

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 6: Use Web Services and Visual Studio Tools for Office

6-31

companyKey = New CompanyKey()

companyKey.Id = (-1)

context.OrganizationKey = CType (companyKey,
OrganizationKey)

context.CultureName ="en-US"

'Create a sales document key

salesOrderKey = New SalesDocumentKey()

salesOrderKey.Id = sSalesOrderKey

'Retrieve the sales order

salesOrder = wsDynamicsGP.GetSalesOrderByKey(salesOrderKey,
context)

'Set the CustomerPONumber property

salesOrder.CustomerPONumber = sPONumber

'Retrieve the update policy for sales orders

salesOrderUpdatePolicy =
wsDynamicsGP.GetPolicyByOperation("UpdateSalesOrder",
context)

'Update the sales order object

wsDynamicsGP.UpdateSalesOrder(salesOrder, context,
salesOrderUpdatePolicy)

'Call ListSalesOrders to update the data source so the

'new Customer PO Number will display.

ListSalesOrders()

End Sub

16. Build the project to verify there are no error messages. Click Build

and then click Build Solution. Resolve any error messages.
17. Test the application to make sure that it works correctly. Execute the

project in debug mode so the excel spreadsheet appears. Click
Debug and then click Start Debugging.

18. Verify Sales Order data is available and that you can add or edit the
CustomerPONumber. Typically, the first Sales Order is
EORD000000001.

19. Type a CustomerPONumber in the yellow box. To click the Submit
button, tab off the CustomerPONumber cell.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

6-32

To verify that the update was successful, click the forward button to view the
next Sales Order. Then click the back button to view the order that you just
updated. If the yellow box displays the value you just entered, the update worked.

NOTE: If you try to update the sales order of a customer who is on hold, you
will receive an error message. You cannot modify a customer record that is on
hold.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 6: Use Web Services and Visual Studio Tools for Office

6-33

Quick Interaction: Lessons Learned
Take a moment and write down three Key Points you have learned from this
chapter:

1.

2.

3.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

6-34

Solutions
Test Your Knowledge

Introduction

1. Visual Studio Tools for Office integrates with Excel, Word, and Outlook.

(•) True
() False

Use VSTO with Web Services for Microsoft Dynamics GP

2. The Data Source for the Dynamics GP Web Service is automatically created
when the Web reference to the DynamicsGPService.asmx Web service is
added to the Office project.

(•) True
() False

Add Data Source Data to Office Documents

3. What should you set the DataSource property of a ListObject to display data
that is returned from a GetList Web service method call?

() DataGridView
(•) Summary Object
() Key
() Instance of Web Service

