
Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-1 

CHAPTER 10: RESOURCE REFERENCE 
Objectives 

The objectives are: 

• Describe form resources.  
• Describe window resources.  
• Describe scrolling window resources.  
• Describe window field resources.  
• Describe table resources.  
• Describe command resources.  
• Describe global variable resources.  
• Describe procedure resources.  
• Describe function resources. 

Introduction 
When users create customizations, it helps to have detailed information about 
each type of resource that is accessed by using Visual Studio Tools for Microsoft 
Dynamics GP. Each resource has the following: 

• Information about how to access the resource  
• A list of methods  
• A list of properties  
• A list of events  

This content is directly based on the Visual Studio Tools for Microsoft Dynamics 
GP Programmer's Guide. 

Scenario 
A client wants a customization that works together with the Sales Transaction 
Entry form. The client wants the application to set the Trade Discount to $5 if the 
subtotal is less than $100, on Sales Invoices only. When the subtotal is larger 
than $100, set the Trade Discount to $10. The total amounts must be recalculated 
to include the trade discount. 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-2 

Forms 
Forms are the basic resource of a Microsoft Dynamics GP application, and 
provide the organization for the interface presented to the user. A form is a 
collection of windows, menus, and other resources that function together for a 
common purpose, providing one logical unit to the end user. For example, four 
windows work together to handle customer information, such as: 

• Customer Maintenance  
• Customer Maintenance Options  
• Customer Account Maintenance  
• Display Credit Limit Warning  

Because they work together, these windows are grouped into a form named 
RM_Customer_Maintenance. Forms are typically named based on the type of 
action the user is performing. Every window in a Dexterity-based application is 
part of a form. 

Accessing Forms 

Forms for an application dictionary are accessed through the dictionary class. 
This class has a Forms property that provides access to the collection of forms in 
the dictionary. The dictionary class for the application dictionary is located in the 
following namespace: 

Microsoft.Dexterity.Applications 

For example, to access the collection of forms in the Dynamics dictionary, use 
the following syntax: 

Microsoft.Dexterity.Applications.Dynamics.Forms 

To access a specific form, such as the Sales Transaction Entry form, also known 
as the SopEntry form, use the following syntax: 

Microsoft.Dexterity.Applications.Dynamics.Forms.SopEntry 

Form Methods 

Forms provide the following methods: 

AddMenuHandler() 

The AddMenuHandler() method adds a menu item to the Additional menu that 
appears on windows in Microsoft Dynamics GP. The menu item is available 
when the form opens, and provides navigation to the form without customizing 
the form with a navigational control such as a button. 

There are several benefits to reducing the number of form customizations: 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-3 

• Other developers can deliver enhancements for the same Microsoft 
Dynamics GP form with fewer conflicts because only one version of 
the form can be displayed. By delivering enhancements on a single 
developer form accessed from the Additional menu, multiple 
developers can deliver enhancements for the same Microsoft 
Dynamics GP form.  

• Customizations made to a form may have to be redone for delivery 
with each maintenance release. Instead of making direct 
customizations to the form, use the Additional menu functionality to 
present customizations; this helps reduce the time that is required for 
upgrade efforts.  

• Duplicate menu item names from multiple developers appear in the 
Additional menu without functional conflicts.  

The AddMenuHandler() method takes three parameters: 

• EventHandler is the function that runs when the menu item is 
chosen.  

• MenuItemName is a string that contains the text that appears for the 
menu item.  

• AcceleratorKey is a string that contains a single character that is used 
as the accelerator key for the menu item. Make sure that the 
accelerator key does not conflict with any existing accelerator keys. 
If you do not want to use an accelerator key, pass an empty string.  

The example shows how a menu handler for the Quick Entry menu item is 
added to the RMCustomerMaintenance form in Microsoft Dynamics GP. Also 
included in the code is the event handler, OpenQuickEntry, for the menu item. It 
assumes a static or Shared form variable named QuickEntry has been declared. 
Notice that it takes two arguments similar to the standard event handlers. 

//C# 
Dynamics.Forms.RmCustomerMaintenance.AddMenuHandler(OpenQui
ckEntry, “Quick Entry”, “Q”); 

static void OpenQuickEntry(object sender, EventArgs e) 
{ 
if (QuickEntry == null) 
{ 
QuickEntryForm = new QuickEntry (); 
} 
else 
{ 
if (QuickEntry.Created == false) 
{ 
QuickEntryForm = new QuickEntry (); 
} 
} 
 

// Always show and activate the Windows Form 
QuickEntry.Show(); 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-4 

QuickEntry.Activate(); 
} 

 

'VB .NET 
Dynamics.Forms.RmCustomerMaintenance.AddMenuHandler(Address
Of OpenQuickEntry, “Quick Entry”, “Q”) 
 
Shared Sub OpenQuickEntry(ByVal sender As Object, ByVal e 
As EventArgs) 
If QuickEntry = Nothing Then 
QuickEntryForm = New QuickEntry() 
Else 
If QuickEntry.Created = False Then 
QuickEntryForm = New QuickEntry() 
End If 
End If 
 

'Always show and activate the Windows Form 
QuickEntry.Show() 
QuickEntry.Activate() 
End Sub 

Close() 

This method closes the form. 

Dispose() 

This method releases the memory used for the form after it is no longer needed. 

Open() 

This method tries to open the form. 

Form Properties 

Forms provide the following properties: 

Form Property Description 
Commands Provide access to the list of commands that are defined by 

the form.  

Functions Provide access to the list of form-level functions that are 
defined by the form.  

IsOpen Has the value true if the form is open, and false if it is not.  

Procedures Provide access to the list for form-level procedures that are 
defined by the form.  



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-5 

Form Events 

Form events can occur either before or after Microsoft Dynamics GP form 
events. You can typically cancel events that occur before Microsoft Dynamics 
GP form events. Forms provide the following events: 

Form Event Description 
OpenBeforeOriginal Occurs when the form is opened, before the Open 

event of the form is run. This event can be canceled.  

OpenAfterOriginal Occurs when the form is opened, after the Open event 
of the form is run.  

CloseBeforeOriginal Occurs when the form is closed, before the Close event 
of the form is run. This event can be canceled.  

CloseAfterOriginal Occurs when the form is closed, after the Close event 
of the form is run.  

Windows 
Windows are a part of the form in Microsoft Dynamics GP. Windows in a 
Dexterity-based application are the windows that you see in the application. 
Windows can be auto-linked to a particular table to make the transfer of 
information easier; they are resources that are local to a specific form. 

Accessing Windows 

Windows for an application dictionary are accessed as properties of the form in 
which they are contained. For example, the Sales Transaction Entry window, or 
SopEntry window, is part of the SopEntry form. To access the SopEntry 
window, use the following syntax: 

Dynamics.Forms.SopEntry.SopEntry 

NOTE: The IntelliSense in Visual Studio informs you of which forms and 
windows in Microsoft Dynamics GP are being referred to by the expression.  



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-6 

Window Methods 

Windows provide the methods shown in the following table. 

Window Method Description 
Close() Closes the window.  

Open() Tries to open the window.  

PullFocus() Removes the focus from the active window. No item in 
the window is focused. Any pending “validate” or “leave” 
events for the currently-focused field are run. 
Use this method to run all pending actions before the 
integrating application performs its processing.  

Window Properties 

Windows provide the following property: 

IsOpen 

This property has the value true if the window is open, and false if it is not. 

Window Events 

Windows events can either occur before or after the Microsoft Dynamics GP 
windows event. You can typically cancel events that occur before the Microsoft 
Dynamics windows event. Windows provide the following events: 

Window Event Description 
OpenBeforeOriginal Occurs when the window is opened, before the Open 

event of the window is run. This event can be 
canceled.  

OpenAfterOriginal Occurs when the window is opened, after the Open 
event of the window is run.  

ActivateBeforeOriginal Occurs every time that the window becomes active, 
before the Activate event of the window is run. The 
Activate event occurs every time that the window is 
opened or brought to the front by the user. 
This event always occurs after the Open event of the 
window is run. 
This event must be used cautiously. Do not perform 
any actions in this event that can cause dialog boxes 
to appear because the application can become 
suspended in an endless loop.  



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-7 

 
Window Event Description 
ActivateAfterOriginal Occurs every time that the window becomes active, 

after the Activate event of the window is run.  

CloseBeforeOriginal Occurs when the window is closed, before the Close 
event of the window is run. This event can be 
canceled.  

CloseAfterOriginal Occurs when the window is closed, after the Close 
event of the window is run.  

PrintBeforeOriginal Occurs when the print action for the window is 
chosen, before the Print event of the window is run. 
The print action for a window occurs when the user 
clicks File, and then clicks Print, or clicks the Print 
button on the window. This event can be canceled.  

PrintAfterOriginal Occurs when the print action for the window is 
chosen, after the Print event of the window is run.  

Scrolling Windows 
Scrolling windows are a special type of window in Microsoft Dynamics GP used 
to display or access data directly from a database table. 

Accessing Scrolling Windows 

Scrolling windows for an application dictionary are accessed as properties of the 
window in which they are contained. For example, the Line Scroll scrolling 
window in the Sales Transaction Entry window of Microsoft Dynamics GP is 
accessed by using the following syntax: 

Dynamics.Forms.SopEntry.SopEntry.LineScroll 

NOTE: The IntelliSense in Visual Studio informs you of which scrolling 
windows in Microsoft Dynamics GP are being referred to by the expression.  

Scrolling Window Methods 

There are no additional methods for scrolling windows. 

Scrolling Window Properties 

There are no additional properties for scrolling windows. 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-8 

Scrolling Window Events 

Scrolling window events can occur before or after the Microsoft Dynamics GP 
event. You can typically cancel the events from those that occur before. Scrolling 
windows provide the following events. 

LineEnterBeforeOriginal 

The LineEnterBeforeOriginal event occurs when the focus moves to a line in the 
scrolling window, before the line enter event of the scrolling window is run. This 
event can be canceled. 

LineEnterAfterOriginal 

The LineEnterAfterOriginal event occurs when the focus moves to a line in the 
scrolling window, after the line enter event of the scrolling window is run. 

LineChangeBeforeOriginal 

The LineChangeBeforeOriginal event occurs when the focus leaves a line in the 
scrolling window and the contents of the line have been modified. The event runs 
before the line change event of the scrolling window is run. This event can be 
canceled. 

LineChangeAfterOriginal 

The LineChangeAfterOriginal event occurs when the focus leaves a line in the 
scrolling window and the contents of the line have been modified. The event runs 
after the line change event of the scrolling window is run. 

Using the scenario described at the start of this content, you can create an event 
handler for LineChangeAfterOriginal event to set the Trade Discount. The code 
sample creates the event handler for the LineChangeAfterOriginal event and the 
event handler method, checks the value of the sales document type, evaluates the 
subtotal, and then sets the Trade Discount. 

//C# 

//Create the event handler 

Dynamics.Forms.SopEntry.SopEntry.LineScroll.LineChangeAfter
Original += new 
EventHandler(SopEntryLineScroll_LineChangeAfterOriginal); 

 

//Event handler method 

void SopEntryLineScroll_LineChangeAfterOriginal (object 
sender, EventArgs e) 

{ 

if(Dynamics.Forms.SopEntry.SopEntry.SopTypeDatabase.Value 
== 3) 

{ 

if (Dynamics.Forms.SopEntry.SopEntry.Subtotal <= 100M) 

{ 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-9 

Dynamics.Forms.SopEntry.SopEntry.TradeDiscountAmount.Value 
= 5.00M; 

} 

else 

{ 

Dynamics.Forms.SopEntry.SopEntry.TradeDiscountAmount.Value 
= 10.00M; 

} 

} 

} 

 

'VB .NET 

AddHandler 
Dynamics.Forms.SopEntry.SopEntry.LineScroll.LineChangeAfter
Original, AddressOf 
SopEntryLineScroll_LineChangeAfterOriginal 

 

Sub SopEntryLineScroll_LineChangeAfterOriginal(ByVal sender 
As Object, ByVal e As EventArgs) 

 

If Dynamics.Forms.SopEntry.SopEntry.SopTypeDatabase.Value = 
3 Then 

If Dynamics.Forms.SopEntry.SopEntry.Subtotal <= 100D Then 

Dynamics.Forms.SopEntry.SopEntry.TradeDiscountAmount.Value 
= 5.00D 

Else 

Dynamics.Forms.SopEntry.SopEntry.TradeDiscountAmount.Value 
= 10.00D 

End If 

End If 

End Sub 

LineLeaveBeforeOriginal 

The LineLeaveBeforeOriginal event occurs when the focus leaves a line in the 
scrolling window, before the line leave event of the scrolling window is run. This 
event can be canceled. 

LineLeaveAfterOriginal 

The LineLeaveAfterOriginal event occurs when the focus leaves a line in the 
scrolling window, after the line leave event of the scrolling window is run. 

//C# 

//Create the event handler 

Dynamics.Forms.SopEntry.SopEntry.LineScroll.LineChangeAfter
Original += new 
EventHandler(SopEntryLineScroll_LineChangeAfterOriginal); 

 

//Event handler method 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-10 

void SopEntryLineScroll_LineChangeAfterOriginal (object 
sender, EventArgs e) 

{ 

if(Dynamics.Forms.SopEntry.SopEntry.SopTypeDatabase.Value 
== 3) 

{ 

if (Dynamics.Forms.SopEntry.SopEntry.Subtotal <= 100M) 

{ 

Dynamics.Forms.SopEntry.SopEntry.TradeDiscountAmount.Value 
= 5.00M; 

} 

else 

{ 

Dynamics.Forms.SopEntry.SopEntry.TradeDiscountAmount.Value 
= 10.00M; 

} 

} 

} 

 

'VB .NET 

AddHandler 
Dynamics.Forms.SopEntry.SopEntry.LineScroll.LineChangeAfter
Original, AddressOf 
SopEntryLineScroll_LineChangeAfterOriginal 

 

Sub SopEntryLineScroll_LineChangeAfterOriginal(ByVal sender 
As Object, ByVal e As EventArgs) 

 

If Dynamics.Forms.SopEntry.SopEntry.SopTypeDatabase.Value = 
3 Then 

If Dynamics.Forms.SopEntry.SopEntry.Subtotal <= 100D Then 

Dynamics.Forms.SopEntry.SopEntry.TradeDiscountAmount.Value 
= 5.00D 

Else 

Dynamics.Forms.SopEntry.SopEntry.TradeDiscountAmount.Value 
= 10.00D 

End If 

End If 

End Sub 

LineInsertBeforeOriginal 

The LineInsertBeforeOriginal event occurs when a new line is added to the 
scrolling window, before the line insert event of the scrolling window is run. This 
event can be canceled. 

LineInsertAfterOriginal 

The LineInsertAfterOriginal event occurs when a new line is added to the 
scrolling window, after the line insert event of the scrolling window is run. 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-11 

LineDeleteBeforeOriginal 

The LineDeleteBeforeOriginal event occurs when a line is removed from the 
scrolling window, before the line delete event of the scrolling window is run. 
This event can be canceled. 

LineDeleteAfterOriginal 

The LineDeleteAfterOriginal event occurs when a line is removed from the 
scrolling window, after the line delete event of the scrolling window is run. 

Window Fields 
Fields represent individual pieces of information and can appear in tables and 
windows. Fields must be unique to a table or window so that they can be 
identified correctly by the script language. Window fields display individual data 
items on a window. 

Accessing Window Fields 

Window fields for an application dictionary are accessed as properties of the 
window or scrolling window on which they are contained. For example, the 
Document Number field is available on the Sales Transaction Entry window. 
Sample code to access the Document Number field on the Sales Transaction 
Entry window and the Trade Discount field on the Sales Transaction Entry 
window scrolling window is provided. 

NOTE: The IntelliSense in Visual Studio informs you of what fields in Microsoft 
Dynamics GP are being referred to by the expression.  

Some fields in windows are called local fields because they are used only within 
a specific form. For example, the Sales Transaction Entry window contains a 
local field named (L) BillTo Address 1; the (L) in the name is the standard way 
to identify local fields in Microsoft Dynamics GP. 

In a Visual Studio Tools for Microsoft Dynamics GP project, the names of these 
fields are prefixed with the word “Local” to indicate they are local fields as 
shown in the sample code. 

//C# 

//To access the Document Number field, use the following 
//syntax: 

Dynamics.Forms.SopEntry.SopEntry.SopNumber; 

 

//Use the following syntax to access the Trade Discount 
//field on the Sales Transaction Entry window scrolling 
//window: 

Dynamics.Forms.SopEntry.SopEntry.TradeDiscountAmount.Value; 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-12 

//To access the BillTo Address 1 local field in a Visual 
//Studio Tools for Microsoft Dynamics GP project, use the 
//following syntax: 

Dynamics.Forms.SopEntry.SopEntry.LocalBillToAddress1; 

 

'VB .NET 

'To access the Document Number field, use the following 
'syntax: 

Dynamics.Forms.SopEntry.SopEntry.SopNumber 

 

'Use the following syntax to access the Trade Discount 
'field on the Sales Transaction Entry window scrolling 
'window: 

Dynamics.Forms.SopEntry.SopEntry.TradeDiscountAmount.Value 

 

'To access the BillTo Address 1 local field in a Visual 
'Studio Tools for Microsoft Dynamics GP project, use the 
'following syntax: 

Dynamics.Forms.SopEntry.SopEntry.LocalBillToAddress1 

Window Field Methods 

Window fields provide the following methods: 

Window Field Method Description 
Disable() Makes the field appear in a disabled state and 

prevents the user from making changes to the field.  

Enable() Allows for a previously disabled field to receive 
user input.  

Focus() Moves the focus to the field.  

ForceValidate() Controls whether the Validate event occurs when 
the focus leaves the field. If the Validate event 
occurs, validation code for the field is run. 
This method takes one Boolean parameter. 
Supplying a value of true forces the validate event 
to occur. Supplying a value of false clears any 
previous call to force the validate event to occur.  

Hide() Causes the field to become invisible and 
inaccessible to the user.  

Lock() Causes a field to become inaccessible to the user. 
The appearance of the field does not change.  

RunValidate() Causes validation code for the window field to run.  

Show() Causes a previously hidden field to become 
visible and available to the user.  



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-13 

 
Unlock() Causes a previously locked field to become 

available to the user.  

Referring to the scenario at the start of this content, the sample code recalculates 
the totals on the Invoice using the RunValidate() method: 

//C# 
void SopEntryLineScroll_LineChangeAfterOriginal (object 
sender, EventArgs e) 
{ 
if(Dynamics.Forms.SopEntry.SopEntry.SopTypeDatabase.Value 
== 3) 
{ 
if (Dynamics.Forms.SopEntry.SopEntry.Subtotal <= 100M) 
{ 
Dynamics.Forms.SopEntry.SopEntry.TradeDiscountAmount.Value 
= 5.00M; 
Dynamics.Forms.SopEntry.SopEntry.TradeDiscountAmount.RunVal
idate(); 
} 
else 
{ 
Dynamics.Forms.SopEntry.SopEntry.TradeDiscountAmount.Value 
= 10.00M; 
Dynamics.Forms.SopEntry.SopEntry.TradeDiscountAmount.RunVal
idate(); 
} 
} 
} 

 

'VB .NET 
Sub New(ByVal sender As Object, ByVal e As EventArgs) 
 

If Dynamics.Forms.SopEntry.SopEntry.SopTypeDatabase.Value = 
3 Then 
If Dynamics.Forms.SopEntry.SopEntry.Subtotal <= 100D Then 
Dynamics.Forms.SopEntry.SopEntry.TradeDiscountAmount.Value 
= 5.00D 
Dynamics.Forms.SopEntry.SopEntry.TradeDiscountAmount.RunVal
idate() 
Else 
Dynamics.Forms.SopEntry.SopEntry.TradeDiscountAmount.Value 
= 10.00D 
Dynamics.Forms.SopEntry.SopEntry.TradeDiscountAmount.RunVal
idate() 
End If 
End If 
 

End Sub 

Window Field Properties 

Window fields have the following property: 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-14 

Value 

This property is used to set or retrieve the value of the field. 

NOTE: The IntelliSense in Visual Studio informs you of the value type that is 
used for the field.  

Window Field Events 

Window field events can run either before or after the Microsoft Dynamics GP 
event. You can typically cancel events that are run before a Microsoft Dynamics 
GP event. Window fields provide the following events: 

 
Window Field Event Description 
Change Occurs when the value of the field changes, such 

as when set by the user or changed by other code 
in Microsoft Dynamics GP.  

EnterBeforeOriginal Occurs when the focus moves to the field, before 
the enter event of the field is run. This event can be 
canceled.  

EnterAfterOriginal Occurs when the focus moves to the field, after the 
enter event of the field is run.  

LeaveBeforeOriginal Occurs when the focus moves from the field, 
before the leave event of the field is run. This 
event can be canceled.  

LeaveAfterOriginal Occurs when the focus moves from the field, after 
the leave event of the field is run.  

ValidateBeforeOriginal Occurs when the focus is to move from the field, 
and the field has been set to be validated. A field is 
validated when its value has changed, or the 
validation is forced, such as with the 
ForceValidate() method. This event occurs before 
the validate event of the field, and can be canceled. 

ValidateAfterOriginal Occurs when the focus is to move from the field, 
and the field is set to be validated. This event 
occurs after the validate event of the field is run.  

Tables 
Tables are the basic resource of the Microsoft Dynamics GP application that 
provide access to the database. Methods provided for each table allow creating, 
retrieving, updating, or deleting rows from the table in the database. 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-15 

Accessing Tables 

A table buffer provides access to one row of a specific table. Your code will 
interact with the table buffer when you perform operations on the table. There are 
two types of table buffers: global and form-level. 

Global table buffers 

A global table buffer is created when a table is accessed directly through the 
global list of tables; it is not shared with any other code. Global table buffers are 
accessed through the dictionary class, which has a Tables property that provides 
access to the collection of tables defined in the dictionary. The dictionary class 
for the application dictionary is located in the following namespace: 

Microsoft.Dexterity.Applications 

For instance, to access the collection of tables in the Dynamics dictionary, use 
the following syntax: 

Microsoft.Dexterity.Applications.Dynamics.Tables 

The following example assumes the Microsoft.Dexterity.Applications namespace 
has been referenced. To access a specific table, such as the 
RM_Customer_MSTR table, use the following syntax: 

Dynamics.Tables.RmCustomerMstr 

NOTE: The IntelliSense in Visual Studio will tell you what table in Microsoft 
Dynamics GP is being referred to by the expression.  

Form-level table buffers 

A form-level table buffer is created when a table is attached to a form in 
Microsoft Dynamics GP. There is one table buffer for each table that is attached 
to the form. Each form-level table buffer is shared by the code that is part of the 
form, as well as any code outside of the form that accesses the table through that 
form. 

The Tables property for the form allows access to the table buffers for the tables 
that are attached to the form. For example, to access the form-level procedures 
for Sales Transaction Entry Form in Microsoft Dynamics GP, use the following 
syntax: 

Dynamics.Forms.SopEntry.Tables 

NOTE: The IntelliSense in Visual Studio will tell you what form-level table in 
Microsoft Dynamics GP is being referred to by the expression.  



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-16 

Table Methods 

Tables provide the following methods: 

Method  Method Method 
Change  Fill RangeEnd 

ChangeFirst  Get  RangeRemove 

ChangeLast  GetFirst  RangeStart  

ChangeNext  GetLast  Release  

ChangePrevious  GetNext  Remove  

Clear  GetPrevious  Save 

Close  RangeClear  
 

Change() 

The Change() method retrieves a row from the table and passively or actively 
locks the row, allowing changes to be made to it. The row retrieved is determined 
by the key specified for the table and the values that were specified for the key 
segments. 

The Change() method has one parameter: ActiveLock. This parameter is an 
optional boolean. The value true specifies that an active lock is applied to the 
row. The value false (the default value) specifies that a passive lock is applied. 

The ChangeFirst() method retrieves the first row from the table and passively or 
actively locks the row, allowing changes to be made to it. The row retrieved is 
determined by the key specified for the table. 

The ChangeFirst() method has one parameter: ActiveLock . This parameter is an 
optional boolean. The value true specifies that an active lock is applied to the 
row. The value false (the default value) specifies that a passive lock is applied. 

ChangeLast() 

The ChangeLast() method retrieves the last row from the table and passively or 
actively locks the row, allowing changes to be made to it. The row retrieved is 
determined by the key specified for the table. 

The ChangeLast() method has one parameter: ActiveLock. This parameter is an 
optional boolean. The value true specifies that an active lock is applied to the 
row. The value false (the default value) specifies that a passive lock is applied. 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-17 

ChangeNext() 

The ChangeNext() method retrieves the next row from the table and passively or 
actively locks the row, allowing changes to be made to it. The row retrieved is 
determined by the key specified for the table and the values of the key fields for 
the row currently in the table buffer. 

The ChangeNext() method has one parameter: ActiveLock. This parameter is an 
optional boolean. The value true specifies that an active lock is applied to the 
row. The value false (the default value) specifies that a passive lock is applied. 

ChangePrevious() 

The ChangePrevious() method retrieves the previous row from the table and 
passively or actively locks the row, allowing changes to be made to it. The row 
retrieved is determined by the key specified for the table and the values of the 
key fields for the row currently in the table buffer. 

The ChangePrevious() method has one parameter: ActiveLock. This parameter is 
an optional boolean. The value true specifies that an active lock is applied to the 
row. The value false (the default value) specifies that a passive lock is applied. 

The Clear() method sets all of the fields in the table buffer to their cleared values. 
The following table lists the cleared value for standard data types. 

Data type Cleared value 
Date 0/0/0 

Currency 0 

Integer 0 

Long 0 

String Empty string 

Time 000000 which corresponds to 12:00:00 AM 

Close() 

The Close() method closes the table buffer. 

The Fill() method sets all of the fields in the table buffer to their maximum 
values. The following table lists the filled value for standard data types. 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-18 

 
Data type Cleared value 
Date 12/31/9999 

Currency 99999999999999.99999 

Integer 32,767 

Long 2,147,483,647 

String The length byte (first byte) of the string is set to the storage size of 
the string minus 1. Each of the remaining bytes is set to the string 
equivalent of ASCII 255.  

Time 23:59:59 

Get() 

The Get() method retrieves a row from the table. No lock is applied to the row. 
The row retrieved is determined by the key specified for the table and the values 
that were specified for the key segments. 

GetFirst() 

The GetFirst() method retrieves the first row from the table. No lock is applied to 
the row. The row retrieved is determined by the key specified for the table. 

GetLast() 

The GetLast() method retrieves the last row from the table. No lock is applied to 
the row. The row retrieved is determined by the key specified for the table. 

GetNext() 

The GetNext() method retrieves the next row from the table. No lock is applied 
to the row. The row retrieved is determined by the key specified for the table and 
the values of the key fields for the row currently in the table buffer. 

GetPrevious() 

The GetPrevious() method retrieves the previous row from the table. No lock is 
applied to the row. The row retrieved is determined by the key specified for the 
table and the values of the key fields for the row currently in the table buffer. 

RangeClear() 

The RangeClear() method removes the range that was specified for the table. 

RangeEnd() 

The RangeEnd() method specifies the current values of the key segments in the 
table buffer as the end of the range of rows in the table. The Key property 
specifies which key will be used for the range. 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-19 

RangeRemove() 

The RangeRemove() method attempts to delete all of the rows in the current 
range from the table. 

RangeStart() 

The RangeStart() method specifies the current values of the key segments in the 
table buffer as the beginning of the range of rows in the table. The Key property 
specifies which key is used for the range. 

Release() 

The Release() method releases any passive or active lock for a row in the table 
buffer. The row values remain in the table buffer. 

Remove() 

The Remove() method deletes the current row in the table buffer from the table. 
The row must be passively or actively locked before it can be deleted. 

Save() 

The Save() method saves the values currently in the table buffer to the table. If 
the row is locked in the table buffer, it is updated. If no row in the table is locked, 
a new row is added. 

Properties 

Tables have the following property: 

Key 

The Key property is used to set or retrieve the key currently being used by the 
table buffer to access the table. The keys for a table are identified by number, 
beginning with the value 1. When you specify the key you want to use for a table, 
supply the corresponding integer. The Table Descriptions window in Microsoft 
Dynamics GP lists the keys for each table, and the key segments (fields) that 
each key contains. 

Commands 
In Microsoft Dynamics GP, commands encapsulate a small piece of functionality 
for the application. They are typically used for navigation. Commands can appear 
in menus and in Microsoft Dynamics GP toolbars. 

Command Types 

A command can be one of the following types: 

• Form - opens the specified form.  



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-20 

• Script - runs the defined script code.  
• Command list - a container for other commands. A command list can 

be used as a menu, submenu, or a toolbar.  

Accessing Commands 

You can access commands for an application dictionary by using the Commands 
property of the form in which they are contained. Most commands in Microsoft 
Dynamics GP are contained in forms used specifically for commands. The names 
of these forms start with “Command” and include the module for which the 
commands are used. For example, to access the command that opens a SmartList 
window in Microsoft Dynamics GP, use the following syntax: 

Dynamics.Forms.CommandSystem.Commands.SmartList 

NOTE: The IntelliSense in Visual Studio informs you of what commands in 
Microsoft Dynamics GP are being referred to by the expression.  

Command Methods 

Commands provide the methods shown in the following table. 

Command Method Description 
Check() Causes the command to appear checked if it appears in a 

menu or on a toolbar.  

Disable() Causes the command to appear disabled when it is 
displayed in a menu or on a toolbar. As soon as it is 
disabled, the command cannot run.  

Enable() Causes a previously disabled command to become 
enabled. It will appear enabled if it is displayed in a 
menu or on a toolbar. As soon as it is enabled, the 
command can run.  

Hide() Causes a command to be hidden in any menu or toolbar 
in which it appears. The command can run after it is 
hidden.  

Run() Performs the action of the command. For form 
commands, it opens the corresponding form. For script 
commands, it executes the script code that is attached to 
the command.  

Show() Causes a previously hidden command to be displayed in 
any menu or toolbar in which it appears.  

Uncheck() Causes the command to appear cleared if it appears in a 
menu or on a toolbar.  



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-21 

Globals 
Globals hold values available to the entire Microsoft Dynamics GP application. 

Accessing Globals 

Globals for an application dictionary are accessed through the dictionary class. 
This class has a Globals property that provides access to the collection of globals 
in the dictionary. The dictionary class for the application dictionary is located in 
the following namespace: 

Microsoft.Dexterity.Applications 

For example, to access the collection of globals in the Dynamics dictionary, use 
the following syntax: 

Microsoft.Dexterity.Applications.Dynamics.Globals 

To access a specific global value, such as the current user's ID, UserID, use the 
following syntax: 

Microsoft.Dexterity.Applications.Dynamics.Globals.UserID 

Global Properties 

Globals have the following property available: 

Value 

This property is used to retrieve the value of the global. Global values cannot be 
set from a Visual Studio Tools for Microsoft Dynamics GP project. 

NOTE: The IntelliSense in Visual Studio informs you of the type of value that is 
used for the field.  

Procedures 
Procedures are script routines that use parameters to pass values in and out; they 
may be called from any form or other procedures. There are two types of 
procedures in a Microsoft Dynamics GP application dictionary: 

• Global procedures are blocks of code that are accessed from various 
locations throughout the application. Parameters send values to a 
procedure and return values from it.  

• Form-level procedures are like global procedures, except that they 
are defined as part of a specific form. Typically, they perform some 
action specific to the form for which they are defined.  



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-22 

Accessing Global Procedures 

Global procedures for an application dictionary are accessed through the 
dictionary class. This class has a Procedures property that provides access to the 
collection of global procedures in the dictionary. The dictionary class for the 
application dictionary is located in the following namespace: 

Microsoft.Dexterity.Applications 

For example, to access the collection of global procedures in the Dynamics 
dictionary, use the following syntax: 

Microsoft.Dexterity.Applications.Dynamics.Procedures 

To access a specific global procedure, such as the 
Get_Next_Form_Note_To_Open procedure, GetNextFormNoteToOpen, use the 
following syntax: 

Dynamics.Procedures.GetNextFormNoteToOpen 

The example assumes the namespace, Microsoft.Dexterity.Applications, has been 
referenced. 

NOTE: The IntelliSense in Visual Studio informs you of which global 
procedures in Microsoft Dynamics GP are being referred to by the expression.  

Procedure Methods 

Procedures provide the following method: 

Invoke() 

This method is used to run the specified procedure. The parameters for this 
method depend on the procedure being run. The following table lists the types of 
parameters for procedures. 

Type Parameter Description 
in Used only to pass values into the procedure.  

out Used only to pass values out of the procedure.  

inout Used to pass values into the procedure, and to pass values out of the 
procedure. The values can be used and changed by the called 
procedure that passes the modified parameter back to the calling 
procedure.  

 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-23 

 

NOTE: The IntelliSense in Visual Studio informs you of each parameter type 
for a procedure. It also tells you the data type of each parameter, such as 
decimal or string.  

The sample code calls the CheckNoteIdString global procedure. This procedure 
has one “in” parameter and two “out” parameters. Notice that the out keyword is 
required for the parameters to which values are returned. 

Invokable Procedures 

In this release of Visual Studio Tools for Microsoft Dynamics GP, not all 
procedures can be invoked. Procedures with the following characteristics cannot 
be invoked: 

• The procedure uses table buffers as parameters. Table buffers are a 
feature of the Dynamics GP runtime engine and are used to access 
data in the database.  

• The procedure uses “anonymous” parameters. These parameter types 
are not known at the time that the application is compiled.  

• The procedure uses “reference” parameters. These parameter types 
contain a link to a specific resource in the application dictionary.  

• If a composite field that is used as a procedure parameter contains a 
reference value, that procedure cannot be invoked.  

If a procedure cannot be run by this version of the Visual Studio Tools for 
Microsoft Dynamics GP, it will not be included in the procedure lists displayed 
by the IntelliSense in Visual Studio. 

Functions 
Functions are similar to Procedures because they are script routines that allow for 
parameters. However, they always include a return value. There are two types of 
functions in a Microsoft Dynamics GP application dictionary: 

• Global functions are blocks of code that are accessed from various 
locations throughout the application. Parameters send values to a 
function and return values from it. In addition, functions always 
return a value.  

• Form-level functions are like global functions, except that they are 
defined as part of a specific form. Typically, they perform some 
action specific to the form for which they are defined.  



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-24 

Accessing Global Functions 

Global functions for an application dictionary are accessed through the dictionary 
class. This class has a Functions property that provides access to the collection of 
global functions in the dictionary. The dictionary class for the application 
dictionary is located in the following namespace: 

Microsoft.Dexterity.Applications 

For example, to access the collection of global functions in the Dynamics 
dictionary, use the following syntax: 

Microsoft.Dexterity.Applications.Dynamics.Functions 

The following example assumes the namespace, 
Microsoft.Dexterity.Applications, has been referenced. To access a specific 
global function, such as the GetCurrentDirectory function, use the following 
syntax: 

Dynamics.Functions.GetCurrentDirectory 

NOTE: The IntelliSense in Visual Studio informs you of which global function 
in Microsoft Dynamics GP is being referred to by the expression.  

Accessing Form-level Functions 

Form-level functions for an application dictionary are accessed through the form 
in which they are contained. The Functions property of the form allows for 
access to the form-level functions. For example, to access the form-level 
functions for Sales Transaction Entry form, SopEntry form, in Microsoft 
Dynamics GP, use the following syntax: 

Dynamics.Forms.SopEntry.Functions 

NOTE: The IntelliSense in Visual Studio informs you what form level function 
in Microsoft Dynamics GP is being referred to by the expression.  

Function Methods 

Functions provide the following method: 

Invoke() 

The Invoke() method is used to run the specified function. The parameters for 
this method depend on the procedure being run. The following table lists the 
types of parameters for functions. 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-25 

 
Type Parameter Description 
in Used only to pass values into the function.  

out Used only to pass values out of the function.  

inout Used to pass values into the function, and to pass values out of the 
function. The values can be used and changed by the called function 
that then passes the modified parameter back to the calling function.  

The Invoke() method has a return value to which the return value of the function 
is returned. 

NOTE: The IntelliSense in Visual Studio informs you of each parameter type 
and the return value for a function. It also tells you the data type of each 
parameter and the return value, such as decimal or string.  

The sample code calls the GetCurrentDirectory global function. This procedure 
has no parameters and returns a string value. 

//C# 

string currentDirectory; 

currentDirectory = 
Dynamics.Functions.GetCurrentDirectory.Invoke(); 

 

'VB .NET 

Dim currentDirectory As String 

currentDirectory = 
Dynamics.Functions.GetCurrentDirectory.Invoke() 

Accessing Form-Level Procedures 

Form-level procedures for an application dictionary are accessed through the 
form in which they are contained. The Procedures property of the form allows 
for access to the form-level procedures. For example, to access the form-level 
procedures for Sales Transaction Entry form, SopEntry form, in Microsoft 
Dynamics GP, use the following syntax: 

Dynamics.Forms.SopEntry.Procedures 

NOTE: The IntelliSense in Visual Studio informs you of which form level 
procedures in Microsoft Dynamics GP are being referred to by the expression.  

Invokable Functions 

In this release of Visual Studio Tools for Microsoft Dynamics GP, not all 
functions can be invoked. Functions that have the following characteristics 
cannot be invoked: 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-26 

• The function uses table buffers as parameters. Table buffers are a 
feature of the Dynamics GP runtime engine and are used to access 
data in the database.  

• The function uses “anonymous” parameters. These parameter types 
are not known at the time the application is compiled.  

• The function uses “reference” parameters. These parameter types 
contain a link to a specific resource in the application dictionary.  

• If a composite field used as a function parameter contains a reference 
value, that function cannot be invoked.  

If a function cannot be run by this version of the Visual Studio Tools for 
Microsoft Dynamics GP, it is not included in the function lists displayed by the 
IntelliSense in Visual Studio. 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-27 

Lab 10.1 - Add Resources to the Vendor Quality Project 
Scenario 

To make an application function within Microsoft Dynamics GP, add the 
appropriate resources to your project. Specifically, you must add code to: 

• Open the Vendor Quality form from the Additional menu  
• Close the Vendor Quality form when the Vendor Maintenance 

form closes  

After the application is code complete, build the solution, deploy it in the 
Microsoft Dynamics GP test environment, and verify the application works as 
expected. 

Challenge Yourself 
1. Modify the Vendor Quality application to close the Vendor Quality 

form when the Vendor Maintenance form closes.  
2. Modify the Vendor Quality application to open the Vendor Quality 

form from the Additional menu.  
3. Set the Assembly information.  
4. Build the application and resolve any build problems.  
5. Deploy the application.  
6. Verify that the application is working correctly.  

Need a Little Help? 
1. Add a new an event handler for the CloseAfterOriginal event of the 

PM Vendor Maintenance form to the Initialize method in the 
Vendor Quality Application.  

2. Add code to close the Vendor Quality form when the Vendor 
Maintenance form closes.  

3. In the Initialize method, use the AddMenuHandler method to open 
the Vendor Quality form from the Additional menu.  

4. Create and add code to the event handler to open the Vendor 
Quality form.  

5. Set the Assembly information.  
6. Build the application and resolve any build problems.  
7. Deploy the application. With Microsoft Dynamics GP closed, copy 

the assembly for your application to the AddIns folder in the 
Microsoft Dynamics GP installation. 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-28 

8. Verify that the application is working correctly. 
 

a. Confirm the Vendor Quality form opens from the 
Additional menu and displays the Vendor ID, Name, 
and Contact data from the Vendor Maintenance form.  

b. Confirm that the modified Items lookup form opens.  
c. Notice if the Item text box on the Vendor Quality form 

contains the item number that you chose from the Items 
lookup form. If it does not, you will debug the 
application in the next lab.  

d. Confirm the Comment 1 and Comment 2 fields on the 
Vendor Maintenance form are populated with the 
Satisfaction level and Item Number that you selected on 
the Vendor Quality form.  

e. Confirm that the Vendor Quality form closes 
appropriately.  



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-29 

Lab 10.2 - Debug the Vendor Quality Project 
Scenario 

As you tested the application in the previous lab, there were two problems: 

• When the Items lookup window is displayed, the items are not 
automatically available. If the you click the Redisplay button, the 
items are available.  

• The Item text box is not populated with the item that was selected on 
the Items lookup window.  

Debug the application to correct these problems. 

Challenge Yourself 

Problem 1: Items are not automatically available on the Items lookup 

1. When you click Redisplay, the scrolling window is populated with 
items.  

2. In the VendorQuality class, add code to call the appropriate method 
of the Redisplay button on the Items lookup form to automatically 
display the items.  

Problem 2: The Item text box is not populated with the item number 
selected on the Item lookup form 

1. Debug your Vendor Quality application by attaching to the 
appropriate process in Visual Studio.  

2. Set a breakpoint in the GPAddIn class on the line of code that sets 
the value of the Item text box.  

3. Stop the application at a breakpoint.  
4. Examine the value of the itemnumber on the lookup window.  
5. Modify the code to obtain the value of the selected item by using 

ItemNumber property of the IvItemNumberScroll window.  
6. Rebuild the application and resolve any build problems.  
7. Redeploy the assembly to the AddIns folder and verify that the 

application is working correctly. 
 

Optional Steps 
8. Change the code in the click event of the btnLookup button to open 

the Items form created in a previous lab.  
9. Rebuild the application, correct any compiler errors, and then 

redeploy the assembly.  
10. Test the application in Microsoft Dynamics GP.  



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-30 

Need a Little Help? 

Problem 1: Items are not automatically available on the Items lookup 

1. You have identified that when you click Redisplay, the scrolling 
window is populated with items.  

2. In the VendorQuality class, add code to call the RunValidate method 
of the Redisplay button on the Items lookup form to automatically 
display the items.  

3. Build and deploy the application.  
4. Test to make sure that the application is now working correctly.  

Problem 2: The Item text box is not populated with the item number 
selected on the Item lookup form 

1. Start Microsoft Dynamics GP, and then open the Vendor Quality 
application in Visual Studio.  

2. In the GPAddIn class, set a breakpoint on the line of code that sets 
the value of the Item text box.  

3. Attach the Visual Studio debugger to the Dynamics.exe process.  
4. Stop the application at a breakpoint by performing the required 

actions to exercise the code that you want to step through in Visual 
Studio.  

5. Examine the value of the itemnumber on the lookup window.  
6. Modify the ItemLookupSelectButton_ClickAfterOriginal event to 

obtain the value of the selected item by using ItemNumber of the 
IvItemNumberScroll window.  

7. Rebuild the application and resolve any build problems.  
8. Redeploy the application.  
9. Verify that the application is working correctly. 
 
Optional Steps 
10. Change the code in the click event of the btnLookup button to open 

the Items form created in a previous lab. Comment out the code to 
open the SmartList modified form and uncomment the code to your 
Items form.  

11. Rebuild the application, correct any compiler errors, and then 
redeploy the assembly.  

12. Test the application in Microsoft Dynamics GP. 
a. Click the Item lookup and confirm that your custom 

Items form opens and items are available. It may take a 
minute to load the form.  

b. In the Items window, click the Description of the item, 
and then click Select. Look if the Item textbox on the 
Vendor Quality form contains the item number that you 
chose.  



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-31 

Lab 10.3 - Access Table Data 
Scenario 

Create a custom form that is opened from the Additional menu on the Customer 
Maintenance window. The custom form should meet the following requirements: 

• Retrieve and display the ClassID and ClassDescription from the table 
buffer.  

• Do not allow the ClassID to be modified.  
• Add a save button to the form to persist changes to the description 

field.  

If there is no Class UD specified on the Customer record, do not show the custom 
form. 

Challenge Yourself 

1. Create a new Microsoft Dynamics GP Add-in project that is named 
VSTGP_CustomerClasses and contains a Microsoft Dynamics GP Form 
named CustomerClasses. 

2. Add controls to the form according to the following table: 

Control Property Value 
Button1 (Name)  btnSave 

 Text Save 

 AutoSetDexColors True 

 ToolTip on tooltip Save 

 ButtonType on 
dexButtonProvider 

ToolbarWithSeparator 

 Image Toolbar_Save 

Button2 (Name)  btnClear 

 Text Clear 

 AutoSetDexColors True 

 ToolTip on tooltip Clear the form 

 ButtonType on 
dexButtonProvider 

ToolbarWithSeparator 

 Image Toolbar_Clear 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-32 

 
Control Property Value 
Button3 (Name)  btnRedisplay 

 Text Redisplay 

 AutoSetDexColors True 

 ToolTip on tooltip Redisplay 

 ButtonType on 
dexButtonProvider 

ToolbarwithSeparator 

 Image Toolbar_Redisplay 

TextBox1 (Name)  txtCustomerClassID 

 AutoSetDexColors True 

 Enabled False 

TextBox2 (Name)  txtDescription 

 AutoSetDexColors True 

Label1 (Name)  lblCustomerClassID 

 AutoSetDexColors True 

 LinkField on dexLabelProvider txtCustomerClassID 

 Text Customer Class ID 

Label2 (Name)  lblDescription 

 AutoSetDexColors True 

 LinkField on dexLabelProvider txtDescription 

 Text Description 

CustomerClasses (Name)  frmCustomerClasses 

 AcceptButton btnSave 

 AutoSetDexColors True 

 CancelButton btnClear 

 Text Customer Classes 

3. In the CustomerClasses class, add using or Imports statements for the 
appropriate namespaces. 

4. Add variables for reusable objects. 

5. Add code in the Load event to retrieve the current class information. 

6. Add code to the click event of the Save button to save changes to the 
description field. 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-33 

7. Add code to the click event of the Clear button to clear all controls. 

8. Add code to the click event of the Redisplay button to refresh the 
information from the Customer Maintenance window. 

9. Add a using or Imports statement to the GPAddIn class for the 
appropriate namespaces. 

10. Add code before the Initialize() method to maintain a reference to the 
forms. 

11. Add code to access the Customer Classes form from the Additional 
menu and to close the Customer Classes form when the Customer 
Maintenance window closes. 

12. Create an event handler for the 
CustomerClassForm_CloseAfterOriginal event. 

13. Create an event handler for the OpenCustomerClasses event. 

14. Set Assembly information. Then, build the solution and correct any 
error messages.  

15. Deploy and test the solution. 

Need a Little Help? 

1. Create a new Microsoft Dynamics GP Add-in project that is named 
VSTGP_CustomerClasses and contains a Microsoft Dynamics GP Form 
named CustomerClasses. 

2. Add controls to the form according to the following table: 

Control Property Value 
Button1 (Name)  btnSave 

 Text Save 

 AutoSetDexColors True 

 ToolTip on tooltip Save 

 ButtonType on 
dexButtonProvider 

ToolbarWithSeparator 

 Image Toolbar_Save 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-34 

 
Control Property Value 
Button2 (Name)  btnClear 

 Text Clear 

 AutoSetDexColors True 

 ToolTip on tooltip Clear the form 

 ButtonType on 
dexButtonProvider 

ToolbarWithSeparator 

 Image Toolbar_Clear 

Button3 (Name)  btnRedisplay 

 Text Redisplay 

 AutoSetDexColors True 

 ToolTip on tooltip Redisplay 

 ButtonType on 
dexButtonProvider 

ToolbarwithSeparator 

 Image Toolbar_Redisplay 

TextBox1 (Name)  txtCustomerClassID 

 AutoSetDexColors True 

 Enabled False 

TextBox2 (Name)  txtDescription 

 AutoSetDexColors True 

Label1 (Name)  lblCustomerClassID 

 AutoSetDexColors True 

 LinkField on dexLabelProvider txtCustomerClassID 

 Text Customer Class ID 

Label2 (Name)  lblDescription 

 AutoSetDexColors True 

 LinkField on dexLabelProvider txtDescription 

 Text Description 

CustomerClasses (Name)  frmCustomerClasses 

 AcceptButton btnSave 

 AutoSetDexColors True 

 CancelButton btnClear 

 Text Customer Classes 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-35 

3. When finished, the Customer Classes form resembles the following 
screenshot: 

 

FIGURE 10.1 CUSTOMER CLASSES FORM 

4. In the CustomerClasses class, add a using or Imports statement for the 
Microsoft.Dexterity.Applications.DynamicsDictionary namespace. 

5. Add variables for reusable objects. 

6. Add code that uses the table resource Get() method in the Load event 
to retrieve the current class information. 

7. Add code that uses the table resource Change() and Save() methods to 
the click event of the Save button to save changes to the description 
field. 

8. Add code to the click event of the Clear button to clear all controls on 
the form. 

9. Add code that uses the table resource Get() method in the Redisplay 
click event to refresh the information from the Customer Maintenance 
window. 

10. Add a using or Imports statement to the GPAddIn class to the 
Microsoft.Dexterity.Applications.DynamicsDictionary namespace. 

11. Add code before the Initialize() method to maintain a reference to the 
forms. 

12. Use the AddMenuHandler() method to add the Customer Classes 
form to the Additional menu, then add code to close the Customer 
Classes form when the Customer Maintenance window closes. 

13. Create an event handler for the 
CustomerClassForm_CloseAfterOriginal event. 

14. Create an event handler for the OpenCustomerClasses event. 

15. Set Assembly information, then build the solution and correct any 
error messages.  



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-36 

16. With Microsoft Dynamics GP closed, deploy the solution to the 
Microsoft Dynamics GP AddIns directory. 

17. Test the solution. 

Summary 
Knowing how to access the resources, and what methods, properties, and events 
are associated with each resource helps you when creating applications that use 
resources in the Microsoft Dynamics GP Dynamics.dic. Keep the following in 
mind when creating your application: 

• Typically events that occur before the related Microsoft Dynamics 
GP event can be canceled by you.  

• It is a best practice to minimize the amount of customizations that 
you make on a Microsoft Dynamics form. Instead of customizing the  

• form, use the AddHandler() method to add a menu item to the 
Additional menu.  



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-37 

Test Your Knowledge 
Test your knowledge with the following questions.  

Cumulative 

1. Which resource enables you to display or access data directly from a 
database table? 

( ) Window fields 
( ) Scrolling windows 
( ) Windows 
( ) Forms 

2. Which resource is a collection of windows, menus, and other resources that 
function together for a common purpose and provide one logical unit to the 
end-user? 

( ) Window fields 
( ) Scrolling windows 
( ) Windows 
( ) Forms 

3. Which resource represents individual pieces of information that can appear 
on a window? 

( ) Window fields 
( ) Scrolling windows 
( ) Windows 
( ) Forms 

4. Which resource represents the work area used to enter and display 
information in an application? 

( ) Window fields 
( ) Scrolling windows 
( ) Windows 
( ) Forms 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-38 

5. True or False. You can typically cancel events from AfterOriginal events. 

 

 

 

 

 

Forms 

6. What Form resource method do you use to add a menu item to the Additional 
menu? 

( ) Show() 
( ) EventHandler() 
( ) PullMenuFocus() 
( ) AddMenuHandler() 

Windows 

7. Why must you use the ActivateBeforeOriginal event together with dialog 
boxes cautiously? 

 

 

 

 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-39 

Lab 10.1 - Add Resources to the Vendor Quality Project 
(Solution) 

Scenario 

To make an application function within Microsoft Dynamics GP, add the 
appropriate resources to your project. Specifically, you must add code to: 

• Open the Vendor Quality form from the Additional menu  
• Close the Vendor Quality form when the Vendor Maintenance 

form closes  

After the application is code complete, build the solution, deploy it in the 
Microsoft Dynamics GP test environment, and verify the application works as 
expected. 

Step by Step 

1. Open your Vendor Quality application in Visual Studio. 

2. In the GPAddIn class, add a using or Imports statement for the 
Microsoft.Dexterity.Applications.DynamicsDictionary. 

//C# 

using Microsoft.Dexterity.Applications.DynamicsDictionary; 

 

'VB .NET 

Imports Microsoft.Dexterity.Applications.DynamicsDictionary 

3. Use the following code to add a variable to keep a reference to the PM 
Vendor Maintenance Form: 

//C# 

static PmVendorMaintenanceForm VendorMaintForm = 
Dynamics.Forms.PmVendorMaintenance; 

 

'VB .NET 

Shared VendorMaintForm As PmVendorMaintenanceForm = 
Dynamics.Forms.PmVendorMaintenance 

4. In the Initialize method, create a new an event handler for the 
CloseAfterOriginal event of the PM Vendor Maintenance form by 
using the following code: 

//C# 

//Close the Vendor Quality form when the Vendor Maintenance 
//form closes 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-40 

VendorMaintForm.CloseAfterOriginal += new 
EventHandler(VendorQualityForm_CloseAfterOriginal); 

 

'VB .NET 

'Close the Vendor Quality form when the Vendor Maintenance 
'form closes 

AddHandler VendorMaintForm.CloseAfterOriginal, AddressOf 
VendorQualityForm_CloseAfterOriginal 

5. Create and add code to the VendorQualityForm_CloseAfterOriginal 
event handler method to close the Vendor Quality form when the 
Vendor Maintenance form closes. Sample code is as follows: 

//C# 

void VendorQualityForm_CloseAfterOriginal(object sender, 
EventArgs e) 

{ 

VendorQualityForm.Hide(); 

VendorQualityForm = null; 

} 

 

'VB .NET 

Sub VendorQualityForm_CloseAfterOriginal(ByVal sender As 
Object, ByVal e As EventArgs) 

VendorQualityForm.Hide() 

VendorQualityForm = Nothing 

End Sub 

6. In the Initialize method, use the AddMenuHandler method to open 
the Vendor Quality form from the Additional menu. Name the menu 
item “Vendor Quality” and set the accelerator key to the letter “V.” Use 
code similar to the following: 

//C# 

VendorMaintForm.AddMenuHandler(OpenVendorQuality, "Vendor 
Quality", "V"); 

 

'VB .NET 

VendorMaintForm.AddMenuHandler(AddressOf OpenVendorQuality, 
"Vendor Quality", "V") 

7. Create and add code to the event handler to open the Vendor Quality 
form as follows: 

//C# 

static void OpenVendorQuality(object sender, EventArgs e) 

{ 

if (VendorQualityForm == null) 

{ 

VendorQualityForm = new frmVendorQuality(); 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-41 

} 

else 

{ 

if (VendorQualityForm.Created == false) 

{ 

VendorQualityForm = new frmVendorQuality(); 

} 

} 

 

//Always show and activate the Windows Form 

VendorQualityForm.Show(); 

VendorQualityForm.Activate(); 

} 

 

'VB .NET 

Shared Sub OpenVendorQuality(ByVal sender As Object, ByVal 
e As EventArgs) 

 

If VendorQualityForm Is Nothing Then 

VendorQualityForm = New frmVendorQuality() 

Else 

If VendorQualityForm.Created = False Then 

VendorQualityForm = New frmVendorQuality() 

End If 

End If 

 

'Always show and activate the Windows Form 

VendorQualityForm.Show() 

VendorQualityForm.Activate() 

End Sub 

8. Set the Assembly information. 

//General Information about an assembly is controlled 
//through the following set of attributes. Change these 
//attribute values to modify the information associated 
//with an assembly. 

[assembly: AssemblyTitle("Vendor Quality")] 

[assembly: AssemblyDescription("Vendor Quality 
Application")] 

[assembly: AssemblyConfiguration("")] 

[assembly: AssemblyCompany("Microsoft Corp")] 

[assembly: AssemblyProduct("VendorQuality")] 

[assembly: AssemblyCopyright("Copyright © Microsoft Corp 
2006")] 

[assembly: AssemblyTrademark("")] 

[assembly: AssemblyCulture("")] 

9. Build the application by following these steps: 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-42 

a. Set the solution configuration to Debug. 
b. Click Build and then click Build VSTGP_VendorQuality. 
c. Verify there were no build problems. Syntax errors will be 
detected and added to the Task List window when you build the 
solution. Double-click an error in the Task List window to 
locate the problematic code and correct the error. If it is 
necessary, obtain help by pressing F1. 

Continue to build the solution until there are no longer any build 
problems. 

10. Deploy the application. 

a. With Microsoft Dynamics GP closed, copy the assembly for 
your application from the following location to the AddIns folder 
in the Microsoft Dynamics GP installation: 

C:\NetProjects\VSTGP_VendorQuality\VSTGP_Vendor
Quality\Bin\Debug 

b. Copy the Application.SmartList.ModifiedForms.dll to the 
following location: 

C:\Program Files\Microsoft Dynamics\GP 

11. Start Microsoft Dynamics GP. Click Start, point to Programs, point 
to Microsoft Dynamics, point to GP 10.0, and then click GP. The 
integrating application loads when Microsoft Dynamics GP starts. 

12. Verify that the application is working correctly. 

a. In Microsoft Dynamics GP, click Cards, point to Purchasing, 
and then click Vendor. 

b. On the Vendor Maintenance window, select a Vendor by 
clicking the lookup next to the Vendor ID field. 

c. Click Additional, and then click Vendor Quality. The 
Vendor Quality form will open and the Vendor ID, Name, and 
Contact fields will be populated with data from the Vendor 
Maintenance form. 

d. Click the Item Lookup and confirm that the modified Items 
lookup form opens. The form will have a dot in front of the 
caption name, .Items, and the buttons that were removed in a 
previous lab will not be available. 

If no items are available on the .Items form, click Redisplay. 

e. In the Items lookup window, click an Item, and then click 
Select. Look if Item textbox on the Vendor Quality form  



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-43 

contains the item number that you chose. If it does not, do not 
worry, you will debug the application in the next lab. 

f. On the Vendor Quality form, set the Satisfaction level, and 
then click Save. Confirm that the Comment 2 field on the 
Vendor Maintenance window has been populated with your 
selection. 

g. Close the Vendor Maintenance form and confirm that the 
Vendor Quality form is no longer available. 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-44 

Lab 10.2 - Debug the Vendor Quality Project (Solution) 
Scenario 

As you tested the application in the previous lab, there were two problems: 

• When the Items lookup window is displayed, the items are not 
automatically available. If the you click the Redisplay button, the 
items are available.  

• The Item text box is not populated with the item that was selected on 
the Items lookup window.  

Use the debugging information learned in this course to correct these problems. 

Step by Step 

Problem 1: Items are not automatically available on the Items Lookup. 

1. You know that when you click Redisplay, the scrolling window is 
populated with items. 

2. In the VendorQuality class, add code to call the RunValidate method 
of the Redisplay button on the Items Lookup form. The code will be 
added to the btnLookup click event as follows: 

//C# 

private void btnLookup_Click(object sender, EventArgs e) 

{ 

SmartListModified.Forms.IvItemNumberLookup.Open(); 

SmartListModified.Forms.IvItemNumberLookup.IvItemNumberLook
up.RedisplayButton.RunValidate(); 

} 

 

'VB .NET 

Private Sub btnLookup_Click(ByVal sender As Object, ByVal e 
As EventArgs) 

SmartListModified.Forms.IvItemNumberLookup.Open() 

SmartListModified.Forms.IvItemNumberLookup.IvItemNumberLook
up.RedisplayButton.RunValidate() 

End Sub 

3. Build the application. Click Build and then click Build 
VSTGP_VendorQuality. Verify there were no build problems. 

4. Deploy the application. With Microsoft Dynamics GP closed, copy the 
assembly for your application from the following location to the AddIns 
folder in the Microsoft Dynamics GP installation: 

C:\Netprojects\VSTGP_VendorQuality\VSTGP_VendorQuality\
Bin\Debug 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-45 

Problem 2: The Item textbox is not populated with the item number selected on 
the Item Lookup form. 

1. Start Microsoft Dynamics GP. Click Start, point to Programs, point 
to Microsoft Dynamics, point to GP 10.0, and then click GP. The 
integrating application loads when Microsoft Dynamics GP starts. 

2. Open the Vendor Quality application in Visual Studio. 

3. In the GPAddIn class, set a breakpoint in the 
ItemLookupSelectButton_ClickAfterOriginal event handler method on 
the line of code that sets the value of the Item text box: 

//C# 

VendorQualityForm.txtItem.Text = 
SmartListModified.Forms.IvItemNumberLookup.IvItemNumberLook
up.ItemNumber.Value; 

 

'VB .NET 

VendorQualityForm.txtItem.Text = 
SmartListModified.Forms.IvItemNumberLookup.IvItemNumberLook
up.ItemNumber.Value 

4. Because the application is running within the Dynamics.exe process, 
attach the Visual Studio debugger to this process. 

a. In Visual Studio, click Debug, and then click Attach to 
Process. 
b. In the Attach to Process window, select the Dynamics.exe 
process in the list of available processes. 
c. Click Attach to attach to the process. After this step, control is 
returned to Visual Studio. 

5. Follow these steps to stop the application at the breakpoint: 

a. Switch to Microsoft Dynamics GP. 
b. Perform the required actions to exercise the code to step 
through in Visual Studio. 

i. Click Cards, point to Purchasing, and then click 
Vendor. 
ii. On the Vendor Maintenance window, select a 
Vendor by 
clicking the lookup next to the Vendor ID field. 
iii. Click Additional, and then click Vendor 
Quality. The Vendor Quality form opens, and the 
Vendor ID, Name, and Contact fields are populated 
with data from the Vendor Maintenance form. 
iv. Click the Item Lookup, click an Item, and then click 
Select. 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-46 

The list of items are automatically populated because of the change made 
at the start of this lab. 

6. Visual Studio will encounter the breakpoint as soon as you click 
Select and become the active application. Examine the value of the 
itemnumber on the lookup window. The itemnumber will be blank and 
not contain what was selected on the Item Lookup window. 

7. When you have finished debugging the integrating application, in 
Visual Studio, click Debug, and then click Stop Debugging. 

8. Modify the ItemLookupSelectButton_ClickBeforeOriginal event to 
obtain the value of the selected item by using the following code: 

//C# 

.IvItemNumberLookup.IvItemNumberScroll.ItemNumber.Value; 

 

'VB .NET 

.IvItemNumberLookup.IvItemNumberScroll.ItemNumber.Value 

Instead of this code: 

//C# 

.IvItemNumberLookup.ItemNumber.Value; 

 

'VB .NET 

.IvItemNumberLookup.ItemNumber.Value 

The event now resembles the following: 

//C# 

void ItemLookupSelectButton_ClickAfterOriginal(object 
sender, System.ComponentModel.CancelEventArgs e) 

{ 

VendorQualityForm.txtItem.Text = 
SmartListModified.Forms.IvItemNumberLookup.IvItemNumberLook
up.IvItemNumberScroll.ItemNumber.Value; 

VendorQualityForm.Show(); 

VendorQualityForm.Activate(); 

} 

 

'VB .NET 

Sub ItemLookupSelectButton_ClickAfterOriginal(ByVal sender 
As Object, ByVal e As 
System.ComponentModel.CancelEventArgs) 

VendorQualityForm.txtItem.Text = 
SmartListModified.Forms.IvItemNumberLookup.IvItemNumberLook
up.IvItemNumberScroll.ItemNumber.Value 

VendorQualityForm.Show() 

VendorQualityForm.Activate() 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-47 

End Sub 

9. Rebuild the application. Click Build and then click Build 
VSTGP_VendorQuality. Resolve any build problems. Continue to 
build the solution until there are no longer any build problems. 

10. With Microsoft Dynamics GP closed, delete the assembly in the 
AddIns folder, and then copy the assembly for the application from the 
following location to the AddIns folder: 

C:\Netprojects\VSTGP_VendorQuality\ 
VSTGP_VendorQuality\Bin\Debug 

11. Start Microsoft Dynamics GP. The application loads when Microsoft 
Dynamics GP starts. 

12. Verify that your integration is working correctly. 

Optional Steps 

13. Change the code in the click event of the btnLookup to open the 
Items form created in a previous lab. Comment out the code to open the 
SmartList modified form and uncomment the code to the Items form: 

//C# 

private void btnLookup_Click(object sender, EventArgs e) 

{ 

//SmartListModified.Forms.IvItemNumberLookup.Open(); 

//SmartListModified.Forms.IvItemNumberLookup. 

//IvItemNumberLookup.RedisplayButton.RunValidate); 

Items myItems = new Items(this); 

myItems.Show(); 

} 

 

'VB .NET 

Private Sub btnLookup_Click(ByVal sender As Object, ByVal e 
As EventArgs) 

'SmartListModified.Forms.IvItemNumberLookup.Open(); 

'SmartListModified.Forms.IvItemNumberLookup. 

'IvItemNumberLookup.RedisplayButton.RunValidate); 

Dim myItems As New Items(Me) 

myItems.Show() 

End Sub 

14. Rebuild the application. Click Build and then click Build 
VSTGP_VendorQuality. Resolve any build problems. Continue to 
build the solution until there are no longer any build problems. 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-48 

15. With Microsoft Dynamics GP closed, delete the assembly in the 
AddIns folder, and then copy the assembly for your application from the 
following location to the AddIns folder: 

C:\Netprojects\VSTGP_VendorQuality\VSTGP_VendorQuality\
Bin\Debug 

16. Start Microsoft Dynamics GP. Your application will load when 
Microsoft Dynamics GP starts. 

17. Test the application. 

a. In Microsoft Dynamics GP, click Cards, point to Purchasing, 
and then click Vendor. 

b. On the Vendor Maintenance window, select a Vendor by 
clicking the lookup next to the Vendor ID field. 

c. Click Additional and then click Vendor Quality. The 
Vendor Quality form will open and the Vendor ID, Name, and 
Contact fields will be populated with data from the Vendor 
Maintenance form. 

 
d. Click the Item lookup and confirm that your custom Items 
form opens and items are available. It may take some time to 
load the form. 

 
e. In the Items window, click the Description of the item, and 
then click Select. Look if Item textbox on the Vendor Quality 
form contains the item number that you chose. Because we are 
using the Description to set the criteria for the item retrieval, you 
must click the Description of the item in the DataGridView. 

f. On the Vendor Quality form, set the Satisfaction level, and 
then click Save. Confirm that the comment fields on the Vendor 
Maintenance window have been populated. 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-49 

Lab 10.3 - Access Table Data (Solution) 
Scenario 

Create a custom form that is opened from the Additional menu on the Customer 
Maintenance window. The custom form should meet the following requirements: 

• Retrieve and display the ClassID and ClassDescription from the table 
buffer.  

• Do not allow the ClassID to be modified.  
• Add a save button to the form to persist changes to the description 

field.  

If there is no Class ID specified on the Customer record, do not show the custom 
form. 

Step by Step 

1. In Visual Studio, create a new project. Click File, point to New, and 
then click Project.  

2. In the New Project window, expand C# or Visual Basic .NET, click 
Dynamics GP, and then click Microsoft Dynamics GP Add-in. Name 
the project VSTGP_CustomerClasses, set the location of the project to 
C:\NetProjects, and then click OK. 

3. In Solution Explorer, right-click VSTGP_CustomerClasses, click 
Add, and then click Component. 

4. In the Add New Item window, click Microsoft Dynamics GP Form, 
name the form CustomerClasses, and then click Add. 

5. Add controls to the form according to the following table: 

Control Property Value 
Button1 (Name)  btnSave 

 Text Save 

 AutoSetDexColors True 

 ToolTip on tooltip Save 

 ButtonType on 
dexButtonProvider 

ToolbarWithSeparator 

 Image Toolbar_Save 

Button2 (Name)  btnClear 

 Text Clear 

 AutoSetDexColors True 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-50 

 
Control Property Value 
 ToolTip on tooltip Clear the form 

 ButtonType on 
dexButtonProvider 

ToolbarWithSeparator 

 Image Toolbar_Clear 

Button3 (Name)  btnRedisplay 

 Text Redisplay 

 AutoSetDexColors True 

 ToolTip on tooltip Redisplay 

 ButtonType on 
dexButtonProvider 

ToolbarwithSeparator 

 Image Toolbar_Redisplay 

TextBox1 (Name)  txtCustomerClassID 

 AutoSetDexColors True 

 Enabled False 

TextBox2 (Name)  txtDescription 

 AutoSetDexColors True 

Label1 (Name)  lblCustomerClassID 

 AutoSetDexColors True 

 LinkField on dexLabelProvider txtCustomerClassID 

 Text Customer Class ID 

Label2 (Name)  lblDescription 

 AutoSetDexColors True 

 LinkField on dexLabelProvider txtDescription 

 Text Description 

CustomerClasses (Name)  frmCustomerClasses 

 AcceptButton btnSave 

 AutoSetDexColors True 

 CancelButton btnClear 

 Text Customer Classes 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-51 

6. When finished, the Customer Classes form resembles the following 
screenshot: 

 

FIGURE 10.2 CUSTOMER CLASSES FORM 

7. In the CustomerClasses class, add a using or Imports statement for the 
Microsoft.Dexterity.Applications.DynamicsDictionary namespace. 

8. Add variables for reusable objects. 

//C# 

//Variable for any table operation error 

TableError err; 

 

//Create a reference to the table 

RmClassMstrTable rmClass = Dynamics.Tables.RmClassMstr; 

 

//Create a variable for the currentClass 

string currentClass; 

 

'VB .NET 

'Variable for any table operation error 

Dim err As TableError 

 

'Create a reference to the table 

Dim rmClass As RmClassMstrTable = 
Dynamics.Tables.RmClassMstr 

 

'Create a variable for the currentClass 

Dim currentClass As String 

9. Add code in the Load event to retrieve the current class information. 

//C# 

private void frmCustomerClasses_Load(object sender, 
EventArgs e) 

{ 

currentClass = 
Dynamics.Forms.RmCustomerMaintenance.RmCustomerMaintenance.
CustomerClass.Value; 

rmClass.Key = 1; 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-52 

rmClass.ClassId.Value = currentClass; 

err = rmClass.Get(); 

if (err == TableError.NoError) 

{ 

 

//Get succeeded 

txtCustomerClassID.Text = rmClass.ClassId.Value; 

txtDescription.Text = rmClass.ClassDescription.Value; 

} 

else 

{ 

 

//Get failed 

MessageBox.Show("Retrieving the Customer Class information 
failed: " + err.ToString()); 

} 

rmClass.Close(); 

} 

 

'VB .NET 

Private Sub frmCustomerClasses_Load(ByVal sender As Object, 
ByVal e As EventArgs) 

currentClass = 
Dynamics.Forms.RmCustomerMaintenance.RmCustomerMaintenance.
CustomerClass.Value 

rmClass.Key = 1 

rmClass.ClassId.Value = currentClass 

err = rmClass.Get() 

If err = TableError.NoError Then 

 

'Get succeeded 

txtCustomerClassID.Text = rmClass.ClassId.Value 

txtDescription.Text = rmClass.ClassDescription.Value 

Else 

 

'Get failed 

MessageBox.Show("Retrieving the Customer Class information 
failed: " + err.ToString()) 

End If 

rmClass.Close() 

End Sub 

10. Add code to the click event of the Save button to save changes to the 
description field. 

//C# 

private void btnSave_Click(object sender, EventArgs e) 

{ 

rmClass.Key = 1; 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-53 

rmClass.ClassId.Value = currentClass; 

err = rmClass.Change(); 

if (err == TableError.NoError) 

{ 

//Set the fields in the table 

rmClass.ClassDescription.Value = txtDescription.Text; 

 

//Save the new row 

err = rmClass.Save(); 

if (err == TableError.NoError) 

{ 

MessageBox.Show("Description Updated"); 

} 

else 

{ 

MessageBox.Show("An error occurred while saving the 
description: " + err.ToString()); 

} 

} 

else 

{ 

MessageBox.Show("An error occurred while retrieving the 
record" + err.ToString()); 

} 

rmClass.Close(); 

} 

 

'VB .NET 

Private Sub btnSave_Click(ByVal sender As Object, ByVal e 
As EventArgs) 

 

rmClass.Key = 1 

rmClass.ClassId.Value = currentClass 

err = rmClass.Change() 

 

If err = TableError.NoError Then 

'Set the fields in the table 

rmClass.ClassDescription.Value = txtDescription.Text 

 

'Save the new row 

err = rmClass.Save() 

 

If err = TableError.NoError Then 

MessageBox.Show("Description Updated") 

Else 

MessageBox.Show("An error occurred while saving the 
description: " + err.ToString()) 

End If 

Else 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-54 

MessageBox.Show("An error occurred while retrieving the 
record" + err.ToString()) 

End If 

rmClass.Close() 

End Sub 

11. Add code to the click event of the Clear button to clear all controls.  

//C# 

private void btnClear_Click(object sender, EventArgs e) 

{ 

txtCustomerClassID.Text = String.Empty; 

txtDescription.Text = String.Empty; 

} 

 

'VB .NET 

Private Sub btnClear_Click(ByVal sender As Object, ByVal e 
As EventArgs) 

txtCustomerClassID.Text = String.Empty 

txtDescription.Text = String.Empty 

End Sub 

12. Add code that uses the table resource Get() method in the click event 
of the Redisplay button to refresh the information from the Customer 
Maintenance window. 

//C# 

private void btnRedisplay_Click(object sender, EventArgs e) 

{ 

rmClass.Key = 1; 

rmClass.ClassId.Value = currentClass; 

err = rmClass.Get(); 

if (err == TableError.NoError) 

{ 

//Get succeeded 

txtCustomerClassID.Text = rmClass.ClassId.Value; 

txtDescription.Text = rmClass.ClassDescription.Value; 

} 

else 

{ 

//Get failed 

MessageBox.Show("Retrieving the Customer Class information 
failed: " + err.ToString()); 

} 

rmClass.Close(); 

} 

 

'VB .NET 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-55 

Private Sub btnRedisplay_Click(ByVal sender As Object, 
ByVal e As EventArgs) 

 

rmClass.Key = 1 

rmClass.ClassId.Value = currentClass 

err = rmClass.[Get]() 

 

If err = TableError.NoError Then 

'Get succeeded 

txtCustomerClassID.Text = rmClass.ClassId.Value 

txtDescription.Text = rmClass.ClassDescription.Value 

Else 

'Get failed 

MessageBox.Show("Retrieving the Customer Class information 
failed: " + err.ToString()) 

End If 

 

rmClass.Close() 

End Sub 

13. Add a using or Imports statement to the GPAddIn class for the 
Microsoft.Dexterity.Applications.DynamicsDictionary namespace. 

14. Add code before the Initialize() method to maintain a reference to the 
forms. 

//C# 

static frmCustomerClasses CustomerClassesForm; 

static RmClassMaintenanceForm CustomerClassForm = 
Dynamics.Forms.RmClassMaintenance; 

 

'VB .NET 

Shared CustomerClassesForm As frmCustomerClasses 

Shared CustomerClassForm As RmClassMaintenanceForm = 
Dynamics.Forms.RmClassMaintenance 

15. Add code in the Initialize() method to add the Customer Classes form 
to the Additional menu and close the Customer Classes form when the 
Customer Maintenance window closes. 

//C# 

Dynamics.Forms.RmCustomerMaintenance.AddMenuHandler(OpenCus
tomerClasses, "Customer Classes", "R"); 

CustomerClassForm.CloseAfterOriginal +=new 
EventHandler(CustomerClassForm_CloseAfterOriginal); 

 

'VB .NET 

Dynamics.Forms.RmCustomerMaintenance.AddMenuHandler(Address
Of OpenCustomerClasses, "Customer Classes", "R") 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-56 

AddHandler CustomerClassForm.CloseAfterOriginal, AddressOf 
CustomerClassForm_CloseAfterOriginal 

16. Create an event handler for the 
CustomerClassForm_CloseAfterOriginal event. 

17. Create an event handler for the OpenCustomerClasses event. 

//C# 

static void OpenCustomerClasses(object sender, EventArgs e) 

{ 

if ((CustomerClassesForm == null) && 
(Dynamics.Forms.RmCustomerMaintenance.RmCustomerMaintenance
.CustomerClass.Value !="")) 

{ 

CustomerClassesForm = new frmCustomerClasses(); 

CustomerClassesForm.Show(); 

CustomerClassesForm.Activate(); 

} 

else 

{ 

if ((CustomerClassesForm.Created == false)&& 
Dynamics.Forms.RmCustomerMaintenance.RmCustomerMaintenance.
CustomerClass.Value !="")) 

{ 

CustomerClassesForm = new frmCustomerClasses(); 

CustomerClassesForm.Show(); 

CustomerClassesForm.Activate(); 

} 

} 

} 

 

'VB .NET 

Shared Sub OpenCustomerClasses(ByVal sender As Object, 
ByVal e As EventArgs) 

 

If CustomerClassesForm Is Nothing Then 

CustomerClassesForm = New frmCustomerClasses() 

CustomerClassesForm.Show() 

CustomerClassesForm.Activate() 

Else 

If CustomerClassesForm.Created = False Then 

CustomerClassesForm = New frmCustomerClasses() 

CustomerClassesForm.Show() 

CustomerClassesForm.Activate() 

End If 

End If 

End Sub 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-57 

18. Set Assembly information, and then build the solution and correct 
any error messages. Click Build, and then click Build CustomerClasses. 

19. With Microsoft Dynamics GP closed, deploy the solution by copying 
the CustomerClasses assembly from the 
C:\NetProjects\CustomerClasses\CustomerClasses\Debug\Bin 
directory to the C:\Program Files\Microsoft Dynamics\GP\AddIns 
directory. 

20. Test the solution. 

1. Start Microsoft Dynamics GP.  
2. Click Cards, click Sales, and then click Customer.  
3. With the Customer Maintenance window blank, click 

Additional, and then click Customer Classes. Make sure 
the Customer Classes form does not open.  

4. On the Customer Maintenance window, select an existing 
customer. 

a. Click Additional, and then click Customer 
Classes. Confirm that the Customer Class ID 
and Description fields are populated.  

b. Change the description, click Save, click Clear, 
and then click Redisplay to confirm the change 
was successful. 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-58 

Quick Interaction: Lessons Learned 
Take a moment and write down three Key Points you have learned from this 
chapter: 

1. 

 

 

 

 

2. 

 

 

 

 

3. 

 

 

 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Chapter 10: Resource Reference 

10-59 

Solutions 
Test Your Knowledge 

Cumulative 

1. Which resource enables you to display or access data directly from a 
database table? 

( ) Window fields 
(•) Scrolling windows 
( ) Windows 
( ) Forms 

2. Which resource is a collection of windows, menus, and other resources that 
function together for a common purpose and provide one logical unit to the 
end-user? 

( ) Window fields 
( ) Scrolling windows 
( ) Windows 
(•) Forms 

3. Which resource represents individual pieces of information that can appear 
on a window? 

(•) Window fields 
( ) Scrolling windows 
( ) Windows 
( ) Forms 

4. Which resource represents the work area used to enter and display 
information in an application? 

( ) Window fields 
( ) Scrolling windows 
(•) Windows 
( ) Forms 

5. True or False. You can typically cancel events from AfterOriginal events. 

MODEL ANSWER - False 



Microsoft Official Training Materials for Microsoft Dynamics ™ 
Your use of this content is subject to your current services agreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Developer Toolkit for Microsoft Dynamics GP 10.0 

10-60 

Forms 

6. What Form resource method do you use to add a menu item to the Additional 
menu? 

( ) Show() 
( ) EventHandler() 
( ) PullMenuFocus() 
(•) AddMenuHandler() 

Windows 

7. Why must you use the ActivateBeforeOriginal event together with dialog 
boxes cautiously? 

MODEL ANSWER - Actions performed in this event that cause dialog boxes 

to appear may become suspended in an endless loop. 


