
Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 9: Debugging and Working with Third-Party Dictionaries

9-1

CHAPTER 9: DEBUGGING AND WORKING WITH
THIRD-PARTY DICTIONARIES
Objectives

The objectives are:

• Explain how to debug an application created using Visual Studio
Tools for Microsoft Dynamics GP

• Describe the tool used to create .NET assemblies that provide access
to dictionary resources

• Explain how to access resources on modified and alternate forms in
Microsoft Dynamics GP

• Interact with Microsoft Dynamics GP tables

Introduction
As you develop applications using the Visual Studio Tools for Microsoft
Dynamics GP, at some point you will want to debug your application to identify
syntax, runtime, or logic issues that occur. You may also want to expand the
solution to:

• Interact directly with Microsoft Dynamics GP tables
• Include dictionary resources or forms from other applications
• Use forms that have been changed with the Modifier tool in

Microsoft Dynamics GP

Scenario
Create an application by using the Visual Studio Tools for Microsoft Dynamics
GP and test it in a development environment. You successfully deploy the
solution in the environment of the client, however, the application does not work
as expected. When debugging the application, you find that the client has both
modified and additional forms that you must access in the application instead of
standard forms.

Debugging
Programming errors can be unavoidable, even for programmers with experience
writing code. When developing an application by using the Visual Studio Tools
for Microsoft Dynamics GP, you may have to examine the code with the Visual
Studio debugger.

There are several types of errors you may encounter. The following topics
describe the different types of errors and prepare you to isolate and correct them.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

9-2

Additionally, you are shown how to disable events in Microsoft Dynamics GP
when it is required in the debugging process.

Types of Errors

The following table shows the three basic types of errors you may encounter
when writing code.

Error Type Description Examples
Syntax Code cannot be understood by

the compiler
Keywords are typed
incorrectly; parenthesis or
semi-colons are missing;
references have not been
added to the solution.

Run-time Occurs when you try to
perform an operation that
cannot be done.

Division by zero; security
exceptions; File not found
error messages.

Logical Code compiles and executes,
but unexpected results are
returned.

Misplaced decimal point;
incorrect loop arguments;
wrong currency.

Syntax Errors

To identify and resolve syntax errors by using Visual Studio, build the project.
Syntax errors are detected automatically, underscored in the code, and displayed
in the Task List window. Double-click the error message in the Task List
window to view the offending line of code in the project. Resolve the problem or
use the Help for additional assistance. When you are writing code using Visual
Basic .NET, it checks the syntax of the code as you type.

Run-Time Errors

When a run-time error occurs, an exception describing the error appears.
Exceptions of type SoapException are thrown when a run-time error message is
returned when using the Web Services for Microsoft Dynamics GP. Use try and
catch blocks of code to handle exceptions to help minimize interruptions in the
execution of the application.

Logical Errors

Logical errors can be the most difficult error messages to resolve. They occur
when the application compiles and executes correctly, but does not produce
expected results. You may not have an idea of the source of the error. To detect
logical errors, use sample data to test the application and then analyze the results.
You may need to test individual methods or examine the code line-by-line to
identify problematic code.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 9: Debugging and Working with Third-Party Dictionaries

9-3

Break Mode

You can examine the code line-by-line in break mode. View variable values and
properties in break mode using the Visual Studio debugging tools. The most
common way to enter break mode is by adding a breakpoint to the solution. Set a
breakpoint in one of the following ways:

• At the line upon which you want the breakpoint, click the gray bar to
the left of the code window.

• Right-click the line on which you want the breakpoint, and then click
Insert Breakpoint.

• Click Debug, and then click New Breakpoint. In the New
Breakpoint window, add the breakpoint and set any specific
conditions that must be met before execution of the application is
stopped.

When a breakpoint is no longer needed, remove it by clicking the breakpoint in
the gray bar to the left of the code editor. To remove all breakpoints at the same
time, click Debug, and then click Clear All Breakpoints.

Break Mode Navigation

When you are in break mode, there are several ways to navigate through your
code. The most common are included in the following table.

Item Shortcut Description
Start F5 Starts the application in debug mode.

Stop Shift + F5 Stops the debugger and returns to Visual
Studio.

Processes Displays the Processes window.

Exceptions Displays the Exceptions window.

Step Into F11 Runs the next line of code. If the next line
calls a method, execution stops at the first line
of code in the method that is executable.

Step Over F10 Runs the next line of code. If the next line
calls a method, execute the code in the
method, and stop at the next line of code in
the current method.

Step Out Shift + F11 Runs the rest of the current method and stops
at the next line of code in the calling method.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

9-4

Debugging Windows

When stepping through an application line-by-line, rest the mouse pointer over a
variable in code to view the value. This is a quick way to determine the current
value of a variable. You can also use various debugging windows to monitor the
application.

The Output window displays command-line output as the application is
compiled and executed. Information includes notifications that assemblies have
been loaded and output from Debug and Trace statements.

The Locals, Autos, and Watch windows let you monitor the status of program
variables and change the values of variables. The latter helps when testing how
methods respond to different input.

In the Locals window, complex types such as classes or structures appear in a
tree view that can be expanded to reveal the values of their members. To change
the value of a variable, select the variable value in the Value column and then
type a new value. Only strings and numeric values can be changed.

The Autos window displays similar data columns as the Locals window, but
includes variables available on the current line and the previous line in C#, or
includes the variables in the current line and three lines on either side of the
current line in Visual Basic .NET.

When using the Watch window, select a variable to track. Variables added to
this window remain even after they are out of scope. Add a variable to the
window in the code editor by right-clicking a variable and then clicking Add
Watch. To change the value of a variable, select the variable value in the Value
column and then type a new value.

Use the Immediate mode of the Command window to execute procedures,
evaluate expressions, or change variable values. After you enter a statement or
method call and press Enter, Visual Studio switches to run time and executes the
statement. The application returns to Break mode after execution of the statement
or method call is completed. For example, if you type “? TextBox1.Text” the
current value of the Text property of TextBox1 prints.

Prepare to Debug

To prepare a Visual Studio Tools for Microsoft Dynamics GP application for
debugging, follow these steps:

1. Set the Solution Configuration to Debug, build the application and
correct any syntax error messages.

2. Deploy the application.
3. Start Microsoft Dynamics GP to load the application.
4. Set breakpoints in the code to indicate where to stop the execution of

the application.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 9: Debugging and Working with Third-Party Dictionaries

9-5

5. Because the application is running within the Dynamics.exe process,
attach the Visual Studio debugger to this process.

a. In Visual Studio, click Debug and then click Attach to
Process.

b. In the Attach to Process window, select the
Dynamics.exe process in the list of available processes.

c. Click Attach to attach to the process. After this step,
control returns to Visual Studio.

The figure shows the Attach to Process window with the Dynamics.exe process
selected.

FIGURE 9.1 ATTACH TO PROCESS WINDOW

Examine the Application

Follow these steps to stop an application at a breakpoint:

1. Switch to Microsoft Dynamics GP.
2. Perform the required actions to exercise the code to step through in

Visual Studio.
3. When Visual Studio encounters a breakpoint, it becomes the active

application. Use the tools within Visual Studio described previously
to examine the code.

4. After you debug the integrating application, in Visual Studio, click
Debug, and then click Stop Debugging.

Disable Events

There may be times when you must disable events for a particular product to
confirm whether they are causing a specific behavior. To disable events, use the
Customization Status window in Microsoft Dynamics GP. This window lists:

• All currently active applications

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

9-6

• If events are registered for each product
• If events are enabled or disabled

To open the Customization Status window and disable events for a particular
product, follow these steps in Microsoft Dynamics GP:

1. From the Microsoft Dynamics GP menu, click Tools, point to
Customize, and then click Customization Status.

2. Select the Microsoft Dynamics GP product or a different product,
and then click Disable.

3. Return to this window and then click Enable when testing is
complete.

FIGURE 9.2 CUSTOMIZATION STATUS WINDOW IN MICROSOFT
DYNAMICS GP

Click the Print button to access the Trigger List Customization Status report.
Print the report to the screen, printer, or a file. This report tells you:

• What type of trigger exists
• To what resource the trigger is registered
• The status of the trigger

Dictionary Assembly Generator
The Dictionary Assembly Generator (DAG.exe) is a utility included with Visual
Studio Tools for Microsoft Dynamics GP that creates a managed code assembly
for access to resources in an application dictionary.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 9: Debugging and Working with Third-Party Dictionaries

9-7

Create Application Assemblies

Several application assemblies are included when you perform the Visual Studio
Tools for Microsoft Dynamics GP runtime installation:

• Assemblies for the core application dictionary, the Dynamics.dic
• Other applications delivered together with Microsoft Dynamics GP

When developing applications that use resources from these dictionaries, you
must use the application assemblies included with the runtime installation. These
assemblies are digitally signed to indicate they were produced by Microsoft. Do
not generate custom versions of application assemblies for dictionaries included
together with the Microsoft Dynamics GP product.

Create application assemblies by using the Dictionary Assembly Generator tool
in the following situations:

• A forms dictionary exists for a product. In the application, you want
to access modified resources in the forms dictionary.

• You have installed a third-party dictionary for which no application
assembly exists. In your application, you want to access resources in
this dictionary. The third-party dictionary may contain one of the
following:
– New forms
– Alternate forms from the Dynamics.dic application dictionary
– Other resources

Output Files

When you use the Dictionary Assembly Generator tool to create an application
assembly, two output files are created. These output files are an application
assembly and an IntelliSense data file.

Application Assembly

The most important of the two output files is the application assembly. This
assembly contains the managed code that provides access to the resources in its
related dictionary. Each dictionary can have one corresponding application
assembly.

The following naming convention is used for application dictionaries:

Application.ProductName.dll

The following naming convention is used for forms dictionaries:

Application.ProductName.ModifiedForms.dll

In the previous examples, ProductName is automatically derived from product
name that is stored in the product information about the dictionary. Spaces and

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

9-8

special characters in the product name are removed. Consider the following
examples:

• The application assembly providing access to resources in the
Dynamics.dic application dictionary is named
Application.Dynamics.dll.

• The application assembly providing access to the resources in the
forms dictionary, Forms.dic, is named
Application.Dynamics.ModifiedForms.dll.

Add a reference to the application assembly within Visual Studio by clicking
Project, and then clicking Add Reference.

IntelliSense Data File

The second type of output from the Dictionary Assembly Generator tool is the
IntelliSense data file. This file is used by Visual Studio to display details about
the resources that can be accessed through the application assembly. This file has
the same name as its corresponding application assembly, but has an .xml
extension.

As you write code, Visual Studio uses the information from this file to provide
you with help to complete keywords and class members, as shown in the figure.

FIGURE 9.3 INTELLISENSE INFORMATION FOR THE ABOUTBOXWINDOW

Use the Dictionary Assembly Generator Tool

The Dictionary Assembly Generator tool is installed in the location specified
during the installation. The Dictionary Assembly Generator is a command-line
tool and must be run at a command prompt. To open a command prompt, click
Start, click Run, type cmd, and then click OK. At the command prompt, set the
current location to the folder where Dictionary Assembly Generator is located.

To view the available commands and their syntax, use the following command at
the command prompt:

dag.exe /?

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 9: Debugging and Working with Third-Party Dictionaries

9-9

The Dictionary Assembly Generator uses the product ID to identify the
dictionary for the application assembly. To find a list of products, open the
launch file. This is usually named Dynamics.set. The figure shows a launch file.
Notice the Microsoft Dynamics GP product has a product ID of 0.

FIGURE 9.4 DYNAMICS.SET LAUNCH FILE

The first line of the Dynamics.set file indicates the number of products that have
been installed. Following this line, there are two lines for each product. The first
line contains the product ID and the second line contains the product name. After
all products are listed, there is a line that indicates a Location Translation ID; the
default value is Windows. After the Location Translation ID, there are three lines
for each product. These lines list the path of the product dictionary, a forms
dictionary, and a reports dictionary.

If you do not supply the name of the launch file, the Dictionary Assembly
Generator tool looks for a launch file that is named Dynamics.set.

NOTE: For this version of Visual Studio Tools for Microsoft Dynamics GP, you
must use a launch file that is named Dynamics.set when creating application
assemblies.

Build an Application Assembly

The Dictionary Assembly Generator tool builds an application assembly for the
main dictionary of an application or for the forms dictionary of an application.

When generating an assembly for the main application dictionary, use the /M
parameter. The following command generates the application assembly for the

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

9-10

main dictionary of the MyApplication. This application has the product ID value
3333; a default launch file that is named Dynamics.set is assumed.

dag.exe 3333 /M

When this command is executed, the following two output files are produced:

• Application.MyApplication.dll
• Application.MyApplication.xml

To generate an assembly for a forms dictionary, use the /F parameter. The
following command generates the application assembly for the forms dictionary
of the main Microsoft Dynamics GP product:

dag.exe 0 /F

When this command is executed, the following two output files are produced:

• Application.Dynamics.ModifiedForms.dll
• Application.Dynamics.ModifiedForms.xml

Sign an Application Assembly

After you create application assemblies by using the Dictionary Assembly
Generator tool, digitally sign the assemblies. This helps make sure that only the
official version of an application assembly is used and it guarantees the identity
of the assembly.

The strong name consists of information about the assembly, such as:

• Name
• Version number
• Culture information
• Public key of a public or private key pair

This information is encrypted by using the private key of the key pair and can be
decrypted by using the public key of the key pair. No one but the developer has
access to the private key. This guarantees the identity of the assembly.

NOTE: After you create the strong name key file, keep it in a safe location. You
must use it every time that you build or rebuild the application assemblies.

To generate a key pair, use the strong name utility, sn.exe, and follow these steps:

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 9: Debugging and Working with Third-Party Dictionaries

9-11

1. Click Start, point to All Programs, point to Microsoft Visual
Studio 2005 .Net, point to Visual Studio Tools, and then click
Visual Studio 2005 Command Prompt.

2. At the prompt, use the -k flag to specify an output file for the key
pair as follows:

sn -k Sample.snk

NOTE: Key pair files usually have a .snk extension.

Use the generated key file to sign the assemblies. The Dictionary Assembly
Generator tool can automatically sign the assemblies that it creates. You can
decide to fully sign the assemblies, or delay signing them.

To fully sign the assembly that uses the Sample.snk strong name key, at the
command prompt, type the following:

dag.exe 3333 /M /S:Sample.snk

To delay signing the assembly that uses the Sample.snk strong name key, at the
command prompt, type the following:

dag.exe 3333 /M /SD:Sample.snk

Optimize the Assembly Generating Process

A resource-intensive process uses the Dictionary Assembly Generator to create
an application assembly for large dictionaries. The Dictionary Assembly
Generator uses a large amount of memory, frequently over one gigabyte, and
significant processor time when producing the assembly. Use the following tips
as guidelines to help optimize the process:

• Use the best hardware available to generate the application assembly.
• Close all other applications before you start the process.
• Turn off background processing tasks, such as virus scanning,

temporarily.

Modified and Alternate Forms
You must use a specific process to access modified or alternate forms from
Visual Studio Tools for Microsoft Dynamics GP.

Modified Forms

Modified forms contain changes that have been made with Modifier. Use
Modifier to make three basic types of modifications, as shown in the following
table.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

9-12

Type of modification Description Example
Modify the appearance
of windows

When you change the
appearance of
individual windows in
the accounting system,
you are customizing the
system to work the way
that you work.

Common window
modifications include:
• Hiding fields that you

will not use.
• Changing the order in

which focus moves
from field to field to
reflect the way that
you want to enter
data into the system.

Make global changes to
the user interface

Changes are reflected
throughout the whole
user interface.

Most strings displayed in
the user interface can be
modified. When
modifying the string “ZIP
Code” and changing it to
“Postal Code,” the
change affects every
location where the string
“ZIP Code” was used.

Add new controls Add new fields to
windows in the
accounting system.

This capability is
primarily designed for
users who also use Visual
Basic for Applications
(VBA) or the Continuum
API to additionally
customize Microsoft
Dynamics GP.

All changes and additions made using Modifier are stored in the forms dictionary
for the application. When you access Modifier for the first time, all core
resources for the application dictionary are copied to the forms dictionary. Core
resources include strings, data types, and global fields that are used by several
parts of the system. After core resources are copied to the Forms dictionary, the
runtime engine looks there first when it retrieves resources from the dictionary.
Any additions or modifications made to core resources are stored in the forms
dictionary. The modifications are accessed automatically by Microsoft Dynamics
GP.

Selecting a form for modification copies the form into the forms dictionary. Any
modifications or additions are stored only in the forms dictionary. By storing new
and modified resources in a separate dictionary, the integrity of the system can be
maintained. To access modifications, set security in the accounting system to
access the modified form.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 9: Debugging and Working with Third-Party Dictionaries

9-13

To use the Modifier:

1. Make sure that there are no other users in the system.
2. Within Microsoft Dynamics GP, from the Microsoft Dynamics GP

menu, click Tools, point to Customize, and then click Modifier.
3. Select the product to modify and then click OK.

NOTE: If Modifier item is unavailable, Modifier has not been registered or you
have not been granted access through system security. Refer to the installation
instructions included with Microsoft Dynamics GP for more information about
registering Modifier.

Access Modified Forms

To access modifications made with Modifier from your Visual Studio Tools for
Microsoft Dynamics GP project, follow these steps:

1. Create an application assembly for the forms dictionary. The
following command creates the application assembly for the forms
dictionary of the core Dynamics GP product:

 dag.exe 0 /F

2. Add a reference to the application assembly in the project. The
reference to the application assembly provides access to the modified
forms for the application.

3. Access the modified forms. Modified forms are accessed through an
additional dictionary class that has the same name as the dictionary
class of the application, but with the additional phrase “Modified.”
The dictionary class used to access modified forms for the Dynamics
core application is as follows:

DynamicsModified

The following code sets the value of a new field on the General Ledger Account
Maintenance form. The new field is a local field, added by using the Modifier,
and is named “Test”.

//C#

DynamicsModified.Forms.GlAccountMaintenance.GlAccountMainte
nance.LocalTest.Value =“My Modified Field”;

'VB .NET

DynamicsModified.Forms.GlAccountMaintenance.GlAccountMainte
nance.LocalTest.Value =“My Modified Field”

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

9-14

NOTE: When you access resources that are defined in the main dictionary for
an application, access them by using the main dictionary class instead of the
Modified class for the application.

Alternate Forms

Alternate forms have the following characteristics:

• They are forms from the core Dynamics dictionary.
• They have been changed by a third-party developer.
• They are stored in a third-party dictionary.

The new and changed resources for the alternate form are accessed through the
application assembly of the third-party product. To access alternate forms from a
Visual Studio Tools for Microsoft Dynamics GP project, follow these steps:

1. Create an application assembly for the third-party dictionary, if it
does not already have one. The following command creates the
application assembly for My Alternate Application, to which an
alternate form has been added:

dag.exe 3333 /M

2. Add a reference to the application assembly in the project. The
reference to the application assembly provides access to the alternate
forms for the application.

3. Access the alternate forms by using the dictionary class for the
assembly that contains them. The alternate forms in My Alternate
Application are accessed through its dictionary class:

MyAlternateApplication

The following code sets the value of a new field on the General Ledger
Account Maintenance window of the alternate version of the General Ledger
Account Maintenance form. This is part of the My Alternate Application
dictionary. The new field is a local field named “Test.”

//C#

MyAlternateApplication.Forms.GlAccountMaintenance.GlAccount
Maintenance.LocalTest.Value =“Alternate Field”;

'VB .NET

MyAlternateApplication.Forms.GlAccountMaintenance.GlAccount
Maintenance.LocalTest.Value =“Alternate Field”

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 9: Debugging and Working with Third-Party Dictionaries

9-15

Guidelines

If you plan to use Visual Studio Tools for Microsoft Dynamics GP to develop an
application for general distribution, limit the number of references to resources
on modified or alternate forms. Because of security settings, a specific user may
not have access to the modified or alternate version of a form. This may cause
errors in an application. If you distribute an application that accesses modified or
alternate forms, make sure that the code correctly handles cases when these
resources are not available.

For example, when you are setting or retrieving the value of a field, use try and
catch blocks of code to enclose the statements. This enables the code to catch any
exceptions that may result because the field cannot be accessed.

The example shows how to use try and catch blocks when you set the value of a
field on an alternate window. In this scenario, an alternate version of the Credit
Limit window of the Customer Maintenance form is used.

//C#

//Set the Status local field in the alternate form

try

{

MyAlternateApplication.Forms.RMCustomerMaintenance.RMCredit
Limit.LocalStatus.Value =“Gold Member”;

}

catch (Exception ex)

{

//The field was not available. In this example, display a
message.

MessageBox.Show(ex.Message);

}

'VB .NET

'Set the Status local field in the alternate form

Try

MyAlternateApplication.Forms.RMCustomerMaintenance.RMCredit
Limit.LocalStatus.Value =“Gold Member”

Catch ex as Exception

'The field was not available. In this example, display a
message.

MessageBox.Show(ex.Message)

End Try

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

9-16

Lab 9.1 - Generate a Custom Form
Scenario

Make a basic customization using the Modifier. You must make this
customization to complete the next lab which requires a custom dictionary. In
Modifier, customize the Item Lookup window to eliminate the New and Open
buttons, and the line separator between them.

Challenge Yourself
1. In Microsoft Dynamics GP, open the Items lookup in Modifier.
2. Change the Visible property of the New and Open buttons to False.
3. Delete the line separator.
4. Return to Microsoft Dynamics GP and grant access to the

customized window.
5. Confirm that the two buttons are no longer visible on the Items

lookup.

Need a Little Help?
1. In Microsoft Dynamics GP, open the Items lookup window, and

then customize the window in Modifier.
2. For the New and Open buttons, in the Properties window, change

the value of the Visible property to False.
3. Click the line separator and then press Delete.
4. Click File and then click Microsoft Dynamics GP.
5. Grant access to the customized window by using the Security Setup

window.
6. Grant access to the modified Items form in the Access List. To use

the modified form, the user must also be granted access to the
original form.

7. To confirm that the change has taken affect, reopen the Items lookup
and make sure that the two buttons are no longer visible.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 9: Debugging and Working with Third-Party Dictionaries

9-17

Lab 9.2 - Generate a New Application Assembly for the
SmartList Forms.dic

Scenario

Change the Vendor Quality application to open the modified Items lookup
window instead of the custom form that you created in previous labs. Generate a
new application assembly to access the SmartList modified alternate form. Then,
update the Vendor Quality application to call the modified alternate Items
lookup window.

Dag.exe is located at C:\Program Files\Microsoft Dynamics\GP10 VS Tools
SDK and the Dynamics.set file is located at C:\Program Files\Microsoft
Dynamics\GP.

Challenge Yourself
1. Identify the product ID for SmartList.
2. Use the Dictionary Assembly Generator to create application

assemblies for the SmartList dictionaries.
3. Change the code in the click event of the lookup button to open the

modified SmartList Item lookup window.
4. When the user selects an item, handle the button click event to

capture the Item Number that was selected.
5. In the Initialize method add an event handler for the

ClickAfterOriginal event of the Select button on the SmartList
modified form.

6. Create the event handler method with the same signature as the
original method and set the Text property of the txtItem control on
the Vendor Quality form to the values that the user selected in the
Item lookup.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

9-18

Need a Little Help?
1. Identify the product ID for SmartList.
2. Create an application assembly for the main SmartList dictionary and

for the SmartList forms dictionary.
3. Open the Vendor Quality application and change the code in the

click event of the lookup button to open the modified SmartList Item
lookup window. Comment out the existing code, and then add the
new code.

4. When the user selects an item, handle the button click event to
capture the Item Number that was selected.

5. In the Initialize method add an event handler for the
ClickAfterOriginal event of the Select button on the SmartList
modified form.

6. Create the event handler method with the same signature as the
original method and set the Text property of the txtItem control on
the Vendor Quality form to the values that the user selected.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 9: Debugging and Working with Third-Party Dictionaries

9-19

Working with Tables
A Visual Studio Tools integration can interact directly with tables defined in
Microsoft Dynamics GP. Using the table integration capability is much simpler
than creating and managing external connections to the Microsoft Dynamics GP
database.

To learn about tables in Microsoft Dynamics GP, you will need to access
information from the following sources:

• Resource Descriptions in Microsoft Dynamics GP
• Microsoft Dynamics GP Software Development Kit
• IntelliSense in Visual Studio

Table Buffers

A table buffer provides access to one row of a specific table. The information in
the table buffer comes from either the table or a script that has run. Your code
interacts with the table buffer when performing operations on the table. There are
two types of table buffers: global and form-level.

A global table buffer is created when a table is accessed directly through the
global list of tables. Global table buffers are accessed through the dictionary
class. This class has a Tables property that provides access to the collection of
tables defined in the dictionary. A global table buffer is not shared with any other
code. This makes global table buffers useful in situations where a Visual Studio
Tools integration must read from or write to a Microsoft Dynamics GP table, but
is not interacting with the user interface.

FIGURE 9.5 GLOBAL TABLE BUFFER ACCESS

A form-level table buffer is created when a table is attached to a form in
Microsoft Dynamics GP. There is one table buffer for each table that is attached
to the form. Each form-level table buffer is shared by the code that is part of the
form, and any code outside of the form that accesses the table through that form.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

9-20

The Tables property for the form allows access to the table buffers for the tables
that are attached to the form. Because they are shared, form-level table buffers
are not typically used by Visual Studio Tools integrations to directly read from or
write to tables. Instead, the form-level table buffers are examined to find what
data the Microsoft Dynamics GP window has read or is writing to the specific
table.

FIGURE 9.6 FORM-LEVEL TABLE BUFFER ACCESS

Opening and Closing Tables

There is no explicit “open” operation in Visual Studio Tools. The first time a
table buffer is accessed, the table is automatically opened. The table buffer
remains open until it is closed.

When an application's code has finished working with a global table buffer, it
must be closed using the Close() method for the table. Failing to close a global
table buffer causes a “Background process is running: Exit Aborted” error when
the user attempts to exit Microsoft Dynamics GP.

For form-level table buffers, the table buffer is closed when the form is closed.
Explicitly closing a form-level table buffer with the Close() method is rarely
needed.

The following example shows how a table is accessed through a global table
buffer. A using or Imports statement for the
Microsoft.Dexterity.Applications.DynamicsDictionary is assumed. The first row
of the RM Customer Master table is retrieved, and the customer number is
displayed. Notice how the table buffer is closed at the end of the example.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 9: Debugging and Working with Third-Party Dictionaries

9-21

//C#

RmCustomerMstrTable CustomerMasterTable;

CustomerMasterTable = Dynamics.Tables.RmCustomerMstr;

//Read the first row of the table

CustomerMasterTable.GetFirst();

//Display the name for the row retrieved

MessageBox.Show(CustomerMasterTable.CustomerName.Value);

//Close the table buffer

CustomerMasterTable.Close();

'VB .NET

Dim CustomerMasterTable As RmCustomerMstrTable

CustomerMasterTable = Dynamics.Tables.RmCustomerMstr

'Read the first row of the table

CustomerMasterTable.GetFirst()

'Display the name for the row retrieved

MessageBox.Show(CustomerMasterTable.CustomerName.Value)

'Close the table buffer

CustomerMasterTable.Close()

Keys

A key is a field or combination of fields in a table that is used to sort and locate
specific rows in the table. Typically, the value of the key field or fields is unique
for each row in a table so a specific row can be located. Keys that do not
uniquely identify a specific row are used to refer to a range of rows in the table.

The keys for a table are identified by number, beginning with the value 1. When
specifying the key to use for a table, supply the corresponding integer. The Table
Descriptions window in Microsoft Dynamics GP lists the keys for each table, and
the key segments (fields) that each key contains.

Use the keys for a table when you retrieve a specific row from the table, and
when you want to perform operations on a range of rows in the table.

Retrieving a Row

Retrieving a row from a table is a multi-step process.

1. Decide which key to use to retrieve the row. Use the Table
Descriptions window in Microsoft Dynamics GP to view the keys
and each key's components.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

9-22

2. Specify the key to use.
3. Set the values of the key fields.
4. Use the Get() or Change() method for the table to retrieve the record.

Which one you use depends on whether or not you want to lock the
record.

The following example retrieves the row for the customer American Electrical
Contractor from the RM_Customer_MSTR table. The second key of the
RM_Customer_MSTR table is used. This key contains one component: the
Customer Name. The contact person for the retrieved customer is displayed in a
dialog.

//C#

//Variable for any table operation error

TableError err;

//Create a reference to the table

RmCustomerMstrTable CustomerMasterTable;

CustomerMasterTable = Dynamics.Tables.RmCustomerMstr;

//Set the key to use for the table

//Key 2 - Contains the Customer Name

CustomerMasterTable.Key = 2;

//Set the value for the key columns

CustomerMasterTable.CustomerName.Value =“American
Electrical Contractor”;

//Retrieve the row

err = CustomerMasterTable.Get();

if (err == TableError.NoError)

{

MessageBox.Show(CustomerMasterTable.ContactPerson.Value);

}

else

{

//Display the error that occurred

MessageBox.Show(err.ToString());

}

//Close the table

CustomerMasterTable.Close();

'VB .NET

'Variable for any table operation error

Dim err As TableError

'Create a reference to the table

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 9: Debugging and Working with Third-Party Dictionaries

9-23

Dim CustomerMasterTable As RmCustomerMstrTable

CustomerMasterTable = Dynamics.Tables.RmCustomerMstr

'Set the key to use for the table

' Key 2 - Contains the Customer Name

CustomerMasterTable.Key = 2

'Set the value for the key columns

CustomerMasterTable.CustomerName.Value =“American
Electrical Contractor”

'Retrieve the row

err = CustomerMasterTable.Get()

If err = TableError.NoError Then

MessageBox.Show(CustomerMasterTable.ContactPerson.Value)

Else

'Display the error that occurred

MessageBox.Show(err.ToString())

End If

'Close the table

CustomerMasterTable.Close()

Saving a Row

To save a new row in a table, set the fields in the table to the values you want to
save. Then use the Save() method to save the new row in the table. The following
example adds a new row to the GL_Account_Category_MSTR table; it sets the
values for the fields in the table, then saves the new row.

//C#

//Variable for any table operation error

TableError err;

//Create a reference to the table

GlAccountCategoryMstrTable CategoryMasterTable;

CategoryMasterTable =
Dynamics.Tables.GlAccountCategoryMstr;

//Set the fields in the table

CategoryMasterTable.AccountCategoryNumber.Value =
(short)49;

CategoryMasterTable.AccountCategoryDescription.Value
=“Profit Sharing”;

//Save the new row

err = CategoryMasterTable.Save();

if(err == TableError.Duplicate)

{

MessageBox.Show(“Account category already exists”);

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

9-24

}

//Close the table

CategoryMasterTable.Close();

'VB .NET

'Variable for any table operation error

Dim err As TableError

'Create a reference to the table

Dim CategoryMasterTable As GlAccountCategoryMstrTable

CategoryMasterTable = Dynamics.Tables.GlAccountCategoryMstr

'Set the fields in the table

CategoryMasterTable.AccountCategoryNumber.Value = CType(49,
Short)

CategoryMasterTable.AccountCategoryDescription.Value
=“Profit Sharing”

'Save the new row

err = CategoryMasterTable.Save()

If err = TableError.Duplicate Then

MessageBox.Show(“Account category already exists”)

End If

'Close the table

CategoryMasterTable.Close()

Updating a Row

To update a row in a table, first read the row with the Change() method. This
retrieves the row and locks it, allowing you to make changes. Set the values of
the fields to change for the row and then use the Save() method to save the
changed row back to the table.

The following example reads the row for Adam Park Resort. The Contact Person
for this row is changed to “Scott Konersmann,” and then the row is saved back to
the RM_Customer_MSTR table.

//C#
//Variable for any table operation error

TableError err;

//Create a reference to the table

RmCustomerMstrTable CustomerMasterTable;

CustomerMasterTable = Dynamics.Tables.RmCustomerMstr;

//Set the key to use for the table

//Key 1 - Contains the Customer Number

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 9: Debugging and Working with Third-Party Dictionaries

9-25

CustomerMasterTable.Key = 1;

//Set the key field in the table

CustomerMasterTable.CustomerNumber.Value =“ADAMPARK0001”;

//Attempt to read the row. The Change() method will lock
//the row.

err = CustomerMasterTable.Change();

if (err == TableError.NoError)

{

//The row was read successfully, so update the value

CustomerMasterTable.ContactPerson.Value =“Scott
Konersmann”;

// Save the updated row

err = CustomerMasterTable.Save();

if (err != TableError.NoError)

{

MessageBox.Show(“An error occurred updating the row: “ +
err.ToString());

}

}

else

{

MessageBox.Show(”An error occurred retrieving the row to
update: “ + err.ToString());

}

//Close the table

CustomerMasterTable.Close();

'VB .NET

'Variable for any table operation error

Dim err As TableError

'Create a reference to the table

Dim CustomerMasterTable As RmCustomerMstrTable

CustomerMasterTable = Dynamics.Tables.RmCustomerMstr

'Set the key to use for the table

'Key 1 - Contains the Customer Number

CustomerMasterTable.Key = 1

'Set the key field in the table

CustomerMasterTable.CustomerNumber.Value =”ADAMPARK0001“

'Attempt to read the row. The Change() method will lock the
'row.

err = CustomerMasterTable.Change()

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

9-26

If err = TableError.NoError Then

'The row was read successfully, so update the value

CustomerMasterTable.ContactPerson.Value =”Scott Konersmann“

' Save the updated row

err = CustomerMasterTable.Save()

If err <> TableError.NoError Then

MessageBox.Show(”An error occurred updating the row: “ +
err.ToString())

End If

Else

MessageBox.Show(”An error occurred retrieving the row to
update: “ + err.ToString())

End If

'Close the table

CustomerMasterTable.Close()

Removing a Row

To remove a row from a table, first read the row with the Change() method; this
retrieves the row and locks it. Then use the Remove() statement to remove the
row from the table.

The following example reads and locks the row for the inventory item
“WIRE100” in the IV_Item_MSTR table. If the item is successfully read, it is
removed from the table.

//C#

//Variable for any table operation error

TableError err;

//Create a reference to the table

IvItemMstrTable ItemMasterTable;

ItemMasterTable = Dynamics.Tables.IvItemMstr;

//Set the key to use for the table

//Key 1 - Contains the Item Number

ItemMasterTable.Key = 1;

//Set the key field in the table

ItemMasterTable.ItemNumber.Value =“WIRE100”;

//Attempt to read the row. The Change() method will lock
//the row.

err = ItemMasterTable.Change();

if (err == TableError.NoError)

{

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 9: Debugging and Working with Third-Party Dictionaries

9-27

//Attempt to remove the row

err = ItemMasterTable.Remove();

if (err != TableError.NoError)

{

MessageBox.Show(“An error occurred removing the row: “ +

err.ToString());

}

}

//Close the table

ItemMasterTable.Close();

'VB .NET

'Variable for any table operation error

Dim err As TableError

'Create a reference to the table

Dim ItemMasterTable As IvItemMstrTable

ItemMasterTable = Dynamics.Tables.IvItemMstr

'Set the key to use for the table

'Key 1 - Contains the Item Number

ItemMasterTable.Key = 1

'Set the key field in the table

ItemMasterTable.ItemNumber.Value =”WIRE100“

'Attempt to read the row. The Change() method will lock the
'row.

err = ItemMasterTable.Change()

If err = TableError.NoError Then

'Attempt to remove the row

err = ItemMasterTable.Remove()

If err <> TableError.NoError Then

MessageBox.Show(”An error occurred removing the row: “ +
err.ToString())

End If

End If

'Close the table

ItemMasterTable.Close()

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

9-28

Table Operation Errors

An error code is returned from each of the table operations that can be
performed. The possible error codes are contained in the TableError enumeration.
Many of the errors included in the enumeration do not occur in the released
versions of Microsoft Dynamics GP.

Typically, your code does one or both of the following after each table operation:

• Check for the NoError value, indicating the table operation was
successful. If the operation was successful, the next processing step
can continue.

• Check for a specific error, such as NotFound. The code must respond
appropriately, such as displaying a message for the user.

When a table operation error occurs, your code does not follow the typical code
path. Be sure that your code closes any tables it has accessed. Otherwise, the user
will not be able to exit Microsoft Dynamics GP.

Ranges

When working with tables, it is efficient to limit the amount of information being
accessed; do this by setting up a range for the table. A range is based on a key for
the table and allows you to access a specified portion of the rows in the table.
The selected range is treated as an entire table. For instance, calling the GetFirst()
method returns the first row in the range. Calling the GetLast() method returns
the last row in the range.

Use the RangeStart() and RangeEnd() methods to specify the range for a table.
You can specify one range per table, and the range is associated with a specific
key. The range is used only when the table is accessed using the key to which the
range is associated. To clear the range specified for a table, use the RangeClear()
method.

For more information about working with ranges, refer to the Visual Studio
Tools for Microsoft Dynamics GP Programmer's Guide.

Multiuser Processing

Microsoft Dynamics GP supports multiple users accessing the same table at the
same time. This is accomplished through Optimistic Concurrency Control
(OCC), a form of record locking that allows multiple users to work in the same
tables and access the same rows with minimal restrictions, while helping to
ensure data integrity.

To allow multiple users to successfully use Microsoft Dynamics GP while Visual
Studio Tools integrations are accessing data, you must choose the type of locking
used. You must also handle any error conditions that occur as a result of multiple
users working with the same row in a table.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 9: Debugging and Working with Third-Party Dictionaries

9-29

For more information about multiuser processing, refer to the Visual Studio
Tools for Microsoft Dynamics GP Programmer's Guide.

Row locking

A row must be locked to delete it or save any changes made to it. A lock is
applied when a row is read from a table. Two lock types can be used: passive and
active.

A passive lock allows other users to access the row. Passive locking ensures that
other users accessing the row can be made aware that the row has been deleted or
that the contents of the row have changed. A passive lock is applied every time a
row is read using the Change() method. The Get() method is used only to read a
row; it never locks the row.

An active lock allows other users to read the row, but not make any changes or
delete the row. Active locking ensures that the user who has the active lock is the
only user who can make changes or delete the row. If other users try to delete or
change the row, they will receive a sharing error. An active lock is applied each
time a row is read using the Change() method and the activeLock parameter for
the method is set to true. Not all tables in Microsoft Dynamics GP allow active
locking. If you try to actively lock a row on a table that does not support it, a
NotSupported error is returned.

Releasing locks

Any of the following actions release a row lock:

• Using the Release() method.
• Using the Save() method or the Remove() method, regardless of

whether the method was successful.

If a row is currently locked in a table buffer, and you attempt to lock another row,
a DoubleLock error is returned indicating a row is already locked.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

9-30

Summary
When you work with Visual Studio Tools for Microsoft Dynamics GP, you may
need to at one point:

• Use the debugging tools in Visual Studio to attach a debugger to the
Microsoft Dynamics GP process in Visual Studio and step through
an application. This helps you isolate problematic code.

• Generate application assemblies for custom applications and
modified and alternate forms by using the Dictionary Assembly
Generator tool.

• Access Microsoft Dynamics GP table information so that you do not
have to create and manage external data connections to Microsoft
Dynamics GP.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 9: Debugging and Working with Third-Party Dictionaries

9-31

Test Your Knowledge
Test your knowledge with the following questions.

Debugging

1. When you build your application in Visual Studio, the Task window shows
errors in logic.

() True
() False

2. What process must you attach to in order to debug your application that was
created by using the Visual Studio Tools for Microsoft Dynamics GP?

3. Which of the following is not one of the three steps to disable events in
Microsoft Dynamics GP?

() Make sure that you return to this window and then click Enable when you
have completed your testing

() Click Tools, point to Customize, and then click Customization Status
() Remove the application that you disabled from the launch file that is

named Dynamics.set
() Select the Microsoft Dynamics GP product, and then click Disable

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

9-32

Dictionary Assembly Generator

4. What are the two output files that are created when you use the Dictionary
Assembly Generator?

Modified and Alternate Forms

5. What is the syntax to create a fully signed assembly for the forms dictionary
of a product that has an ID equal to 5593 and a strong name key of
MyKey.snk?

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 9: Debugging and Working with Third-Party Dictionaries

9-33

Lab 9.1 - Generate a Custom Form (Solution)
Scenario

Make a basic customization using the Modifier. You must make this
customization to complete the next lab which requires a custom dictionary. In
Modifier, customize the Item Lookup window to eliminate the New and Open
buttons, and the line separator between them.

Step by Step

There are two ways that you can start Modifier.

Method 1: Start the Modifier

1. From the Microsoft Dynamics GP menu, click Tools, point to
Customize, and then click Modifier.

NOTE: If the Modifier item is unavailable, Modifier has not been
registered or you have not been granted access through system
security. Refer to the installation instructions included with Microsoft
Dynamics GP for more information about registering the Modifier.

2. If you have installed additional products that integrate with Microsoft
Dynamics GP, the following window appears when starting Modifier:

FIGURE 9.7 PRODUCT WINDOW

3. Select the product you want to modify, and then click OK. If
Microsoft Dynamics GP is the only product available, the window does
not appear.

Method 2: Start the Modifier to customize the active window

1. In Microsoft Dynamics GP, open the window to customize.

2. On the Tools menu, point to Customize, and then click Modify
Current Window.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

9-34

Use Method 2 to modify the Items Lookup.

1. In Microsoft Dynamics GP, click Cards, point to Inventory, and then
click Item.

2. In the Item Maintenance window, click the lookup button next to the
Item Number field to open the Items lookup.

3. After the Items lookup is open, click Tools, point to Customize, and
then click Modify Current Window.

4. When Modifier opens, the screen resembles the following:

FIGURE 9.8 MODIFIER

5. Click the New button, in the Properties window, switch to the Visual
tab, and then change the value of the Visible property to False.

6. Click the Open button, in the Properties window, switch to the
Visual tab, and then change the value of the Visible property to False.

7. Click the line separator and then press Delete on the keyboard.

8. Click File, and then click Microsoft Dynamics GP. When you are
prompted to save the changes, click Save.

9. To grant access to the customized window, you must use the
Alternate/Modified Forms and Reports window.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 9: Debugging and Working with Third-Party Dictionaries

9-35

a. From the Microsoft Dynamics GP menu, click Tools, point
to Setup, point to System, and then click Alternate/Modified
Forms and Reports.
b. Enter the system password (Pa$$w0rd) to open the window.

10. Make the following selections in the window:

Field Value
ID DEFAULTUSER

Product SmartList

Type Windows

11. In the Alternate/Modified Forms and Reports List, expand Inventory,
expand Items, and then click SmartList (Modified). Click Save and then
close the window.

12. To confirm that the change has taken affect, in Microsoft Dynamics
GP, click Cards, point to Inventory, and then click Item.

13. In the Item Maintenance window, click the lookup button next to
the Item Number field to open the Items lookup. The modified window
is displayed.

FIGURE 9.9 ITEMS LOOKUP

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

9-36

Lab 9.2 - Generate a New Application Assembly for the
SmartList Forms.dic (Solution)

Scenario

Change the Vendor Quality application to open the modified Items lookup
window instead of the custom form that you created in previous labs. Generate a
new application assembly to access the SmartList modified alternate form. Then,
update the Vendor Quality application to call the modified alternate Items
lookup window.

Dag.exe is located at C:\Program Files\Microsoft Dynamics\GP10 VS Tools
SDK and the Dynamics.set file is located at C:\Program Files\Microsoft
Dynamics\GP.

Step by Step

1. Identify the product ID for SmartList from the Dynamics.set file. The
product ID is the number on the line directly above the product Name.

2. Open a command prompt. Click Start, click Run, type cmd, and then
click OK. At the command prompt, set the current location to the folder
where Dictionary Assembly Generator is located.

3. Create an application assembly for the main SmartList dictionary. The
following command creates the application assembly for the main
dictionary of the SmartList product if it does not already exist at
C:\Program Files\Microsoft Dynamics\GP10 VS Tools SDK

dag.exe 1493 “C:\Program Files\Microsoft
Dynamics\GP\Dynamics.set” /M

When this command is executed, the following two output files are
produced:

• Application.SmartList.dll
• Application.SmartList.xml

4. Create an application assembly for the SmartList forms dictionary.
The following command creates the application assembly for the forms
dictionary of the SmartList product:

dag.exe 1493 “C:\Program Files\Microsoft
Dynamics\GP\Dynamics.set” /F

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 9: Debugging and Working with Third-Party Dictionaries

9-37

When this command is executed, the following two output files are
produced:

• Application.SmartList.ModifiedForms.dll
• Application.SmartList.ModifiedForms.xml

5. By default, the output files that are create are available at the
following location:

C:\Program Files\Microsoft Dynamics\GP10 VS Tools SDK

6. In Visual Studio, open your Vendor Quality application was created in
the previous labs.

7. Add a reference to the Application.SmartList.ModifiedForms.dll and
the Application.SmartList.dll application assemblies. The reference to
the application assembly provides access to the modified forms for the
SmartList application.

a. Click Project, and then click Add Reference.
b. In the Add Reference window, click the Browse tab, select the
Application.SmartList.ModifiedForms.dll and the
Application.SmartList.dll, and then click OK.

8. Access the modified forms. Modified forms are accessed through an
additional dictionary class that has the same name as the dictionary class
of the application, but with the additional phrase “Modified.” The
dictionary class used to access modified forms for the SmartList product
is as follows:

SmartListModified

9. Add a using or Imports statement to the VendorQuality class for the
SmartListModifiedDictionary as follows:

//C#

using
Microsoft.Dexterity.Applications.SmartListModifiedDictionar
y;

'VB .NET

Imports
Microsoft.Dexterity.Applications.SmartListModifiedDictionar
y

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

9-38

10. Change the code in the click event of the btnLookup button to open
the modified SmartList Item lookup window. Comment out the existing
code, and then add the additional code as follows:

//C#

private void btnLookup_Click(object sender, EventArgs e)

{

SmartListModified.Forms.IvItemNumberLookup.Open();

//Items myItems = new Items(this);

//myItems.Show();

}

'VB .NET

Private Sub btnLookup_Click(ByVal sender as Object, ByVal e
As EventArgs)

SmartListModified.Forms.IvItemNumberLookup.Open()

'Items myItems = new Items(this)

'myItems.Show()

End Sub

11. When the user selects an item, handle the button click event to
capture the Item Number that was selected.

In the GPAddIn class, just before the Initialize method, add a variable to
keep a reference of the Vendor Quality form:

//C#

static frmVendorQuality VendorQualityForm;

'VB .NET

Shared VendorQualityForm As frmVendorQuality

12. In the Initialize method add an event handler for the
ClickAfterOriginal event of the Select button on the
SmartListModified form:

//C#

SmartListModified.Forms.IvItemNumberLookup.IvItemNumberLook
up.SelectButton.ClickAfterOriginal += new
EventHandler(ItemLookupSelectButton_ClickAfterOriginal);

'VB .NET

AddHandler
SmartListModified.Forms.IvItemNumberLookup.IvItemNumberLook
up.SelectButton.ClickAfterOriginal, AddressOf
ItemLookupSelectButton_ClickAfterOriginal

13. Create the event handler method with the same signature as the
original method and set the Text property of the txtItem control on the

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 9: Debugging and Working with Third-Party Dictionaries

9-39

Vendor Quality form to the values that the user selected and code to
open and activate the Vendor Quality form:

//C#

void ItemLookupSelectButton_ClickAfterOriginal(object
sender, EventArgs e)

{

VendorQualityForm.txtItem.Text =
SmartListModified.Forms.IvItemNumberLookup.IvItemNumberLook
up.ItemNumber.Value;

VendorQualityForm.Show();

VendorQualityForm.Activate();

}

'VB .NET

Sub ItemLookupSelectButton_ClickAfterOriginal(ByVal sender
As Object, ByVal e As EventArgs)

VendorQualityForm.txtItem.Text =
SmartListModified.Forms.IvItemNumberLookup.IvItemNumberLook
up.ItemNumber.Value

VendorQualityForm.Show()

VendorQualityForm.Activate()

End Sub

14. Build the application by clicking Build and then Build
VSTGP_VendorQuality. Correct any error messages that are returned.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

9-40

Quick Interaction: Lessons Learned
Take a moment and write down three Key Points you have learned from this
chapter:

1.

2.

3.

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Chapter 9: Debugging and Working with Third-Party Dictionaries

9-41

Solutions
Test Your Knowledge

Debugging

1. When you build your application in Visual Studio, the Task window shows
errors in logic.

() True
(•) False

2. What process must you attach to in order to debug your application that was
created by using the Visual Studio Tools for Microsoft Dynamics GP?

MODEL ANSWER - Dynamics.exe

3. Which of the following is not one of the three steps to disable events in
Microsoft Dynamics GP?

() Make sure that you return to this window and then click Enable when you
have completed your testing

() Click Tools, point to Customize, and then click Customization Status
(•) Remove the application that you disabled from the launch file that is

named Dynamics.set
() Select the Microsoft Dynamics GP product, and then click Disable

Dictionary Assembly Generator

4. What are the two output files that are created when you use the Dictionary
Assembly Generator?

MODEL ANSWER - Application assembly and IntelliSense data file

Modified and Alternate Forms

5. What is the syntax to create a fully signed assembly for the forms dictionary
of a product that has an ID equal to 5593 and a strong name key of
MyKey.snk?

MODEL ANSWER - dag.exe 5593 /F /S:MyKey.snk

Microsoft Official Training Materials for Microsoft Dynamics ™
Your use of this content is subject to your current services agreement

Developer Toolkit for Microsoft Dynamics GP 10.0

9-42

